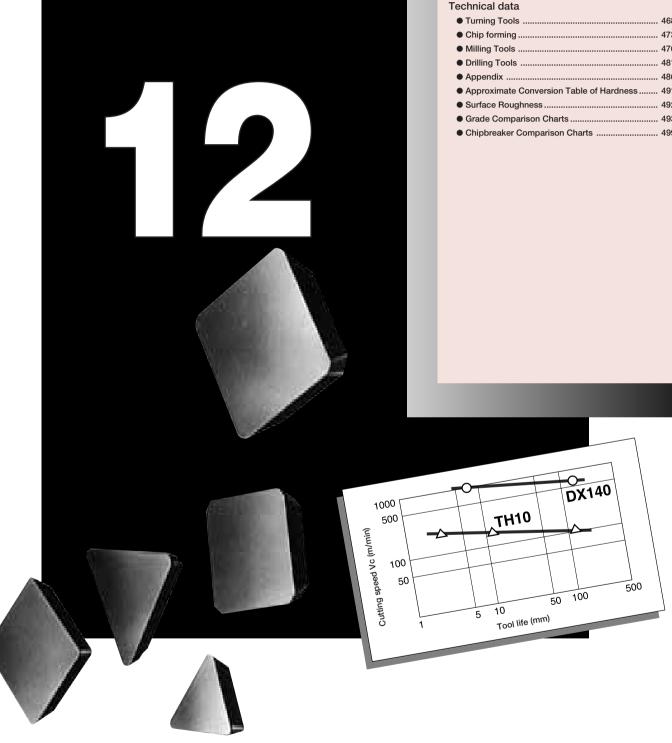


Tungaloy Catalogue TE0707-E2

2007

Cutting Tools

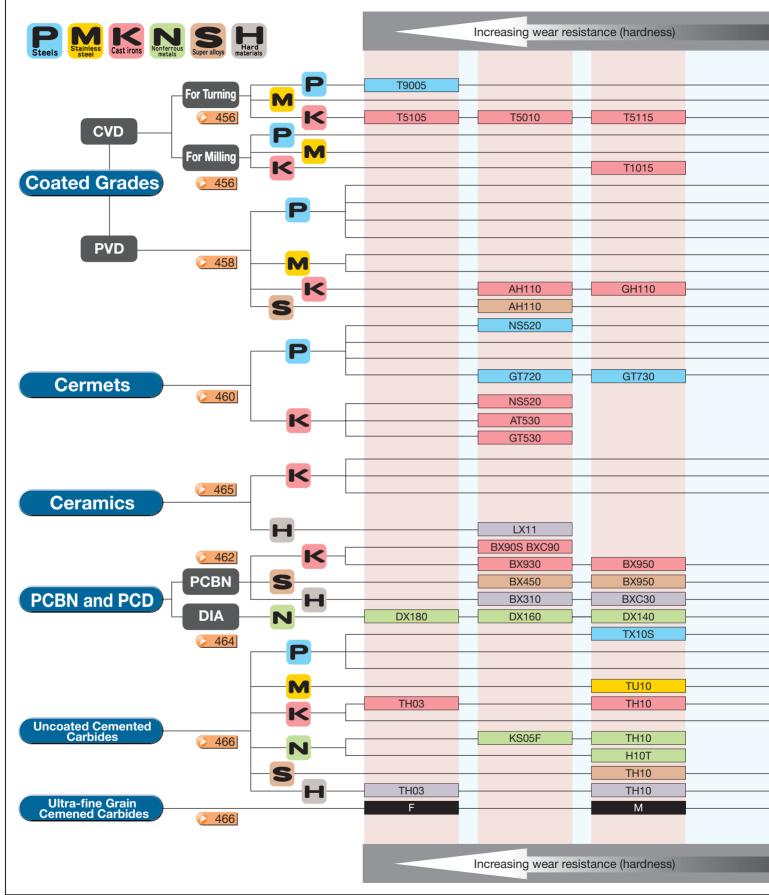


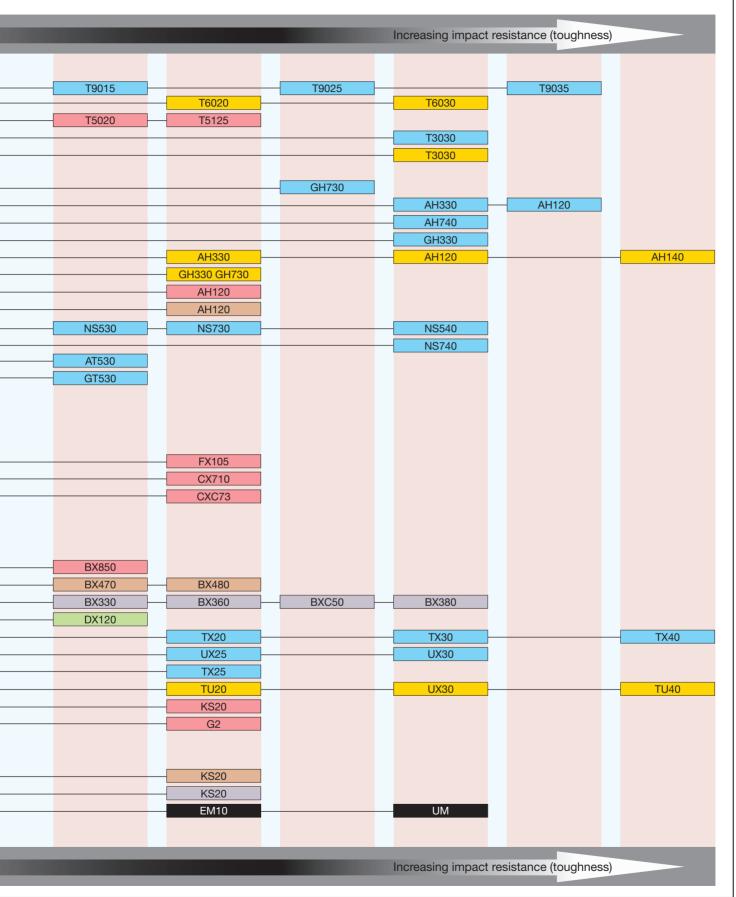
www.tungaloy-eu.com

Grades and Technical Data

Grades

-		
,	Grade Selection	454
,	CVD Coated Grades for Turning	456
,	CVD Coated Grades for Milling	458
,	PVD Coated Grades	459
,	Cermet Grades	460
,	PCBN (T-CBN) Grades	462
,	PCD (T-DIA) Grades	464
,	Ceramics Grades	465
,	Uncoated Cemented Carbide Grades	466
,	Ultra-fine Grain Cemented Carbide Grades	467
Γe	echnical data	
,	Turning Tools	468
,	Chip forming	473
,	Milling Tools	476
,	Drilling Tools	481
,	Appendix	486
,	 Approximate Conversion Table of Hardness 	491
,	Surface Roughness	492
,	Grade Comparison Charts	493
,	Chipbreaker Comparison Charts	499




Troubleshooting for turning

Turping to al failure		Countermeasures	
Typical tool failure	Tool grade	Cutting conditions	Tool geometry
Flank wear	 Change to more wear resistant grades. P. M. K30 → 20 → 10 	 Reduce cutting speed. Change to appropriate feed. 	 Increase relief angle. Increase end cutting edge angle. Increase corner radius. Select free-cutting chipbreaker.
Crater wear	 Change to more wear resistant grades. P. M. K30 → 20 → 10 	Reduce cutting speed.Reduce feed.	 Increase rake angle. Select an appropriate chipbreaker.
Notch wear	 Change to more wear resistant grades. P. M. K30 → 20 → 10 	Reduce cutting speed.Reduce feed.	 Increase rake angle. Increase side cutting edge angle.
Fracture	• Change to tougher grades. P. M. K10 \rightarrow 20 \rightarrow 30	Reduce feed.Reduce cutting depth.	 Reduce rake angle. Select a chipbreaker with high edge strength. Increase honing width. Increase side cutting edge angle. Select larger shank size.
Chipping	• Change to tougher grades. P. M. K10 $ ightarrow$ 20 $ ightarrow$ 30	Reduce feed.Increase cutting speed.	 Reduce rake angle. Select a chipbreaker with high edge strength. Increase honing width. Increase side cutting edge angle. Select larger shank size.
Flaking	• Change to tougher grades. P. M. K10 $ ightarrow$ 20 $ ightarrow$ 30	 Reduce feed. Reduce cutting speed. 	Reduce rake angle.Increase corner radiusIncrease honing width.
Plastic deformation	 Change to more wear resistant grade. P. M. K30 → 20 → 10 	 Reduce cutting speed. Reduce feed. Reduce cutting depth. Supply cutting fluid in adequate volume. 	 Increase relief angle. Increase rake angle. Reduce corner radius. Reduce side cutting edge angle. Select a free-cutting chipbreaker.
Chip welding	 Use a grade which has a low tendency to adhere to work material. Cemented carbide → Coated carbide or cermet 	 Increase cutting speed. Increase feed. 	 Increase rake angle. Select a free-cutting chipbreaker.
Thermal cracking	 Change to more impact resistant grades. P. M. K10 → 20 → 30 	 Reduce cutting speed. Reduce feed. Use a cutting fluid. Supply cutting fluid in adequate volume. 	 Increase rake angle. Select a free-cutting chipbreaker.

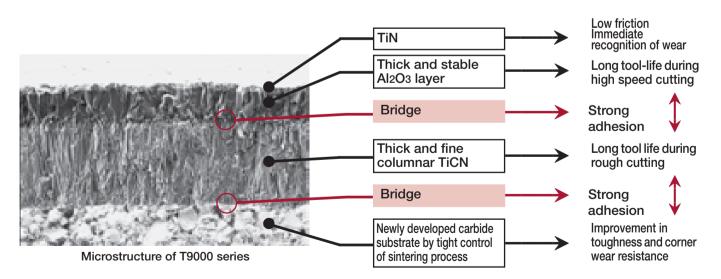
Grades

Grade Selection

Note : The positioning of each grade does not correspond with the hardness of the grade.

Grades

CVD (Chemical Vapor Deposition) Coated Grades for Turning

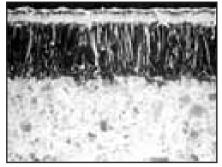

	-										
ISO			Deels			ess steel			K Cast irons	5	
05	05							_			
10	T9005						T5105	10		T5010	
15		T9015						T5115			T5020
20					T6020				Q		Ĕ
25			T9025						T5125		
30						T6030					
35				T9035							
40											

CVD coated carbide grades consist of a cemented carbide substrate over which TiC, TiN, or Al₂O₃, etc. are deposited to about 3 to 16 μ m thick by means of a chemical vapor deposition method.

The coating layer is hard and superior in heat and oxidation resistance, and chemically stable. With these advantages, these coated grades ensure longer tool life and high-efficiency machining.

T9000 series

Our new Double-Bridge Technology enables thicker coatings to be applied while preventing the layers from peeling off.


			Substrate		Coating	layer	
Application	Grade Application code	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Main composition	Thickness (μm)	Features
	T9005	14.1	01 5	2.4		16	•Realization of excellent adhesion by "Double- Bridge" effect.
	P05 - P10	14.1	91.5	2.4		10	•T9005 shows excellent performance during high speed cutting.
	T9015	13.8	01.0	2.4	Fine	16	 T9015 shows good balance of wear resistance and impact resistance. T9025 shows excellent impact resistance
P	P10 - P20	13.0	91.0	2.4	columnar TiCN	10	during light to medium interrupted cutting. • T9035 shows extremely high impact resistance during because interrupted cutting
	T9025	13.7	90.0	2.5	+	14	during heavy interrupted cutting.
	P20 - P30	13.7	90.0	2.0	Al2O3	14	
	T9035	13.5	89.0	2.6		14	
	P30 - P40	10.0	00.0	2.0		1-7	
	T6020	14.1	90.0	2.5	Special	6	T6000 series have improved notch wear resistance and chipping resistance by a combination of special substrates and
M	M15 - M25			2.0	titanium		extremely high coating adhesion. •T6020: Applicable for medium to high speed
Stainless steel	T6030	14.6	89.0	2.6	compound (columnar)	6	cutting and continuous to light interrupted cutting. •T6030: Applicable for low to medium speed
	M25 - M35						cutting. Has extremely excellent impact resistance. For interrupted cutting.
	T5105	15.0	92.5	2.4		16	The coating layer of T5100 features fine-grained and hard columnar crystals of Ti (C, N) and its wear resistance is drastically improved.
	K05 - K15						Moreover, combined with the dedicated cemented carbide substrate, which has fine structure and high-strength, three grades of
	T5115	14.8	91.5	2.7	Fine columnar TiCN	16	T5100 series has realized excellent cutting performance in a wide range of cast iron turning. •T5105: Excels in wear and deformation
	K10 - K20				+ Al2O3		 resistance in high-speed, continuos turning. T5115: General purpose grade which achieves stable machining in a wide range of cutting
K Cast irons	T5125	14.0	90.5	2.8		16	conditions from continuous to interrupted cutting. •T5125: Espacially excels in heavily interrupted
	K15 - K30						cutting. Very tough grade having high resistance to unpredicted breakage.
	T5010						T5000 series have improved adhesion and wear resistance.
	K05 - K15	14.7	92.0	2.4	Columnar TiCN	16	•T5010: For continuous to light interrupted cutting of cast irons and ductile cast irons.
	T5020				+ Al ₂ O ₃		•T5020: For continuous to medium interrupted cutting of cast irons and ductile cast irons.
	K10 - K25	14.5	91.0	2.8	A12O3	16	
	T313V	14.5	90.5	2.3	Special titanium compound (columnar) +	3	•Features specially engineered substrate with excellent resistance to impacts and plastic deformation and well controlled coating
	_				Al ₂ O ₃		composition and layer thickness.

CVD (Chemical Vapor Deposition) Coated Carbide Grades for Milling

ISO	P	Stainless steel	K Cast irons
05			
10			
15			
20			T1015
25	-		
30	T3030	T3030	
35			
40			

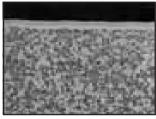
CVD coated carbide grades consist of a cemented carbide substrate over which TiC, TiN, or Al₂O₃, etc. are deposited to about 6 to 8 μ m thick by means of a chemical vapor deposition method.

The coating layer is hard and superior in heat and oxidation resistance, and chemically stable. With these advantages, these coated grades ensure longer tool-life and appropriate for high-efficiency machining.

Microstructure of T1015 (SEM)

			Substrate	;	Coating	layer	
Application	Grade Application code	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Main composition	Thickness (μm)	Features
Р	T3030	14.2	89.5	2.8	Columnar TiCN	6	Realization of excellent adhesion by "Double Bridge" effect. Constitution of attack and attained attained.
Steels	P20 - P40	14.2	09.5	2.0	+ Al ₂ O ₃	0	 For milling of steels and stainless steels. Shows good balance of wear resistance and impact resistance.
Μ	T3030	14.2	89.5	2.8	Columnar	6	•Realization of excellent adhesion by "Double Bridge" effect.
Stainless steel	M20 - M40	14.2	09.5	2.0	TiCN + Al2O3	0	 For milling of steels and stainless steels. Shows good balance of wear resistance and impact resistance.
κ	T1015	14.9	91.5	2.7	Columnar TiCN	8	 Features special carbide substrate designed to have high resistance to impacts, thermal cracks and plastic deformation.
Cast irons	K10 - K30	14.5	31.5	2.1	+ Al ₂ O ₃	0	•Excels in adhesion between coating and substrate.

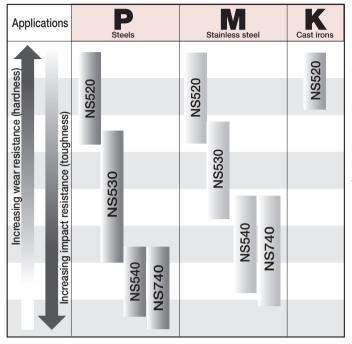
459


PVD (Physical Vapor Deposition) Coated Carbide Grades

ISO		P	ls		:	Stair st	nles	s	0	ast	tirons	Non-ferrous metals		Jult-to- tterials
05											-	0	0	
10											GH110	GH110	AH110	
15							0	0		H				
20			_				GH730	GH330			AH120			AH120
25			GH730	õ	0									4
30	0	AH330 AH740		GH330	AH120									
35	AH120					AH140								
40						HA								

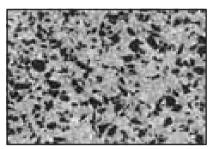
PVD coated carbides consist of a cemented carbide substrate over which titanium compound such as TiN is covered to about 1 to 5 μ m thick by means of a physical vapor deposition PVD) method. Because of the lower coating temperature, the substrate does not form any brittle harmful layer and can retain the original shape and dimension. The Ti(C,N,O) base coating is superior to TiN coating in wear resistance. And, (Ti,AI)N base coating has higher resistance to oxidation. Due to the excellent toughness of both coating and substrate, these grades are suitable for interrupted cutting. Their sharp cutting edge allows the grades to be used for cutting difficult-to-cut materials which tend to be work-hardened.

Microstructure of "Flash-Coat"


Microstructure of "Premium Coat"

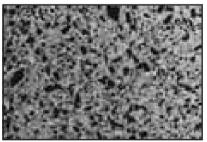
			Substrate	•	Coating	layer			
Application	Grade Application code	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Main composition	Thickness (μm)	Features		
	AH120	14.5	90.8	2.8		3	 Used for steels, cast irons, stainless steels and heat resisting alloys. 		
	P30 - P40	14.5	90.0	2.0		5	Substrate is K20 carbide. Excels in high-temperature strength.		
	AH330	12.6	91.1	2.3	(Ti,Al)N base	3	General purpose grade for steels. Substrate is P30 carbide. Excels in high-temperature		
	P25 - P35	12.0	01.1	2.0	(11,7 1)14 50000		strength.		
Ρ	AH740	13.9	91.5	3.5		3	 General purpose grade for steels. Excels in high temperature strength and chipping 		
Steels	P25 - P35	10.5	01.0 0.0			0	resistance.		
Sieeis	GH730	14.4	91.5	3.0		3	 PVD coated ("Premium Coat") fine grain cemented carbides. 		
	P20 - P30	14.4	01.0	0.0	Ti(C.N.O)base	0	•For grooving and parting at low speed.		
	GH330	12.6	91.1	2.3	n(C,N,O)Dase	3	General purpose grade for steels and stainless steel. Substrate is highly reliable P30 grade. Excels in wear		
	P25 - P35	12.0	91.1	2.5		5	resistance.		
	AH120	14.5	90.8	2.8		3	• For continous to medium interrupted cutting of		
	M25 - M35	14.5	90.8	2.0	(Ti,Al)N base	3	stainless steels.		
	AH140	14.4	89.5	2.6	(TI,AI)N DASE	3	• For milling of stainless steels (at low speed).		
	M35 - M40	14.4	69.5	2.0		3			
Stainless steel	GH730	14.4	91.5	3.0		3	 PVD coated ("Premium Coat") fine grain cemented carbides. 		
	M15 - M25	14.4	91.5	3.0	Ti(C,N,O)base	3	•For grooving and parting at low speed.		
	GH330	12.6	91.1	2.3	11(0,11,0)Dase	3	• For continuous to medium interrupted cutting of		
	M15 - M25	12.0	91.1	2.3		3	stainless steels (at high speed).		
	AH110	147	00.0	2.4		3	 Used for steels, cast irons, and heat resisting alloys. For continuous to medium interrupted cutting of 		
	K05 - K15	14.7	92.0	2.4		3	cast irons (at high speed).		
K	AH120	145	00.0	0.0	(Ti,Al)N base	0	•General grade for cast irons. For various cutting		
Cast irons	K15 - K25	14.5	90.8	2.8		3	conditions		
	GH110	14.7	92.0	2.4		3	• For cast irons and non-ferrous metals. Excels wear		
	K05 - K15	14.7	92.0	2.4	Ti(C,N,O)base	3	resistance.		
Ν	GH110	147	00.0	0.4		0	• For cast irons and non-ferrous metals. Excels wear		
Non-ferrous metals	N05 - N15	14.7	92.0	2.4	Ti(C,N,O)base	3	resistance.		
	AH110	147	00.0	0.4		0	• For cast irons and heat-resistant alloys. Especially		
S	S05 - S15	14.7	92.0	2.4	(TT: A !)	3	excellent plastic deformation resistance.		
Difficult-to-cut materials	AH120	445	00.0	0.0	(Ti,Al)N base	0	• Excels to both plastic deformation and chipping		
	S15 - S25	14.5	90.8	2.8		3	resistance.		
For small lathes	J740	13.9	91.5	3.5	TiN base	1	• For small lathes. Ultra-fine grain cemented carbides coated with TiN based compounds.		

Grades 460


Cermet

Uncoated

Cermet consists of a hard phase surrounded by binding phase as in the case of cemented carbides. The hard phase consists of mainly titanium carbide (TiC) and titanium nitride (TiN). These carbides and nitrides are superior in the strength and oxidation resistance at high temperature when compared with tungsten carbide (WC).


Furthermore, its little tendency to react with the work material ensures high crater resistance. Finally, cermet grades are applicable from high-speed cutting range to low-speed range and feature excellent surface roughness.

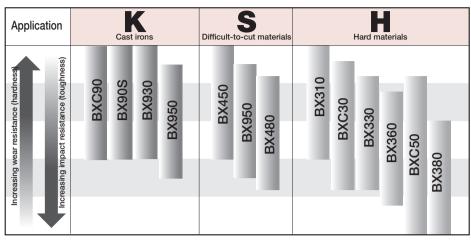
Microstructure of NS530 (SEM)

Coated

A	Applications				P	6	Stainless steel			с	kast irc	ons	
Increasing wear resistance (hardness)	indeasing wear resistance (namess)		Increasing impact resistance (toughness)	AT520	AT530	GT530	AT520	AT530	GT530	AT520	AT530	GT530	

Microstructure of NS540 (SEM)

Cermet


Uncoated

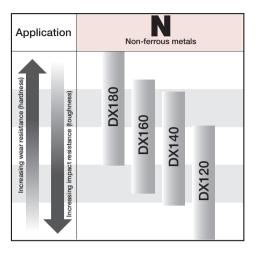
			Substrate	;	Coating	layer	
Application	Grade Application code	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Main composition	Thickness (μm)	Features
	NS520	6.6	92.1	1.7	_	_	 Used for high-speed, high-efficiency cutting of steels and cast irons. Controlling the size of hard particles give this grade excellent wear and impact resistance.
	NS530	7.2	91.7	2.0	-	_	General purpose grade for steels, cast irons and stainless steels. Excels in both excellent wear resistance and toughness.
	NS730	6.8	92.0	2.2	-	_	Priority on impact resistance Superior resistance to thermal and mechanical fracture Excels in cost performance
P	NS540	7.0	92.0	2.0	_	_	 A highly tough cermet grade for general purpose. Excels especially in thermal crack resistance and also provides both wear resistance and toughness.
	NS740	6.8	91.7	2.2	_	_	 High toughness grade for milling. Excels especially in thermal crack resistance and also provides both wear resistance and excellent impact resistance.
	N308	6.9	91.8	1.7	_	_	 A general purpose grade provided with both excellent wear resistance and toughness. For milling.
	NS530	7.2	91.7	2.0	_	_	General purpose grade for steels, cast irons and stainless steels. Excels in both excellent wear resistance and toughness.
	NS730	6.8	92.0	2.2	_	_	 Priority on impact resistance Superior resistance to thermal and mechanical fracture Excels in cost performance
Stainless	NS540	7.0	92.0	2.0	_	-	 A highly tough cermet grade for general purpose. Excels especially in thermal crack resistance and also provides both excellent wear resistance and toughness.
steel	NS740	6.8	91.7	2.2	_	_	 High toughness grade for milling. Excels especially in thermal crack resistance and also provides both excellent wear resistance and excellent impact resistance.
	N308	6.9	91.8	1.7	_	_	 A general purpose grade provided with both excellent wear resistance and toughness. For milling.
	NS520	6.6	92.1	1.7	_	-	 Used for high-speed, high-efficiency cutting of steels and cast irons. Controlling the size of hard particles give this grade excellent wear and impact resistance.
Cast irons	NS730	6.8	92.0	2.2	_	_	 Priority on impact resistance Superior resistance to thermal and mechanical fracture Excels in cost performance
	NS530	7.2	91.7	2.0	_	_	General purpose grade for steels, cast irons and stainless steels. Excels in both excellent wear resistance and toughness.

Coated

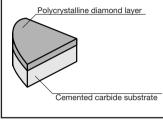
			Substrate	!	Coating	layer	
Application	Grade Application code	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Main composition	Thickness (µm)	Features
	AT520	6.6	92.1	1.7	(Ti,Al)N base	3	 PVD coated grade for high speed and finish cutting of steels. Combination of cermet substrate with good wear resistance and coating layer with excellent heat resistance.
	AT530	7.2	91.7	2.0		3	 PVD coated grade for finish to medium cutting of steels. Provided with plastic deformation resistant substrate and heat resistant coatings.
P	GT520	6.6	92.1	1.7	Ti(C,N,O)base	3	 PVD coated grade for high speed and finish cutting of steels and cast irons. Has improved wear resistance while maintaining excellent mechanical strength of the substrate.
010013	GT530	7.2	91.7	2.0	1(0,14,0)0436	3	 PVD coated grade for finishing to medium cutting of steels and stainless steels. Has improved wear resistance while maintaining excellent mechanical strength of the substrate.
	GT730	6.8	92.0	2.2	Ti(C,N,O)base	3	 PVD coated grade for finishing to medium cutting of steels and stainless steels. Has improved wear resistance while maintaining excellent mechanical strength of the substrate.
M	GT530	GT530 7.2 91.7		2.0	Ti(C,N,O)base	3	 PVD coated grade for finishing to medium cutting of steels and stainless steels. Increased wear resistance without lowering toughness of substrates.
Stainless steel	GT730	6.8	92.0	2.2	Ti(C,N,O)base	3	 PVD coated grade for finishing to medium cutting of steels and stainless steels. Increased wear resistance without lowering toughness of substrates.
K Cast irons	GT520	6.6	92.1	1.7	Ti(C,N,O)base	3	 PVD coated grade for finishing to medium cutting of steels and cast irons. Increased wear resistance without lowering toughness of substrates.
For small lathes	J530	7.2	91.5	2.0	TiN base	1	 For small lathes. Cermets coated PVD-TiN based compounds.

Polycrystalline Cubic Boron Nitride Compacts (PCBN), T-CBN

- This is a tool material, in which fine crystals of cubic boron nitride (the hardest material next to diamond) are tightly compacted and sintered on the cemented carbide base using special binder under high temperature and high pressure.
- The hardness is more than twice that of cemented carbide, with the hardness at high temperature exceeding that of cemented carbide.
- CBN has no tendency to react with ferrous materials (which is different from the case with diamond), and is thus suitable for high-speed cutting of cast iron, finishing of the hardened steel, cast iron, ferrous sintered metals (valve seat, etc.). Also, this material is suited for finishing of super heat resistant alloys.
- The use of CBN sintered material enables the finish surface accuracy (expected only through grinding up to now) simply by cutting.


Polycrystalline Cubic Boron Nitride Compacts (PCBN), T-CBN

				Transverse	Coating	layer	
Application	Grade	Microstructure	Hardness (Hv)	rupture strength (GPa)	Main composition	Thickness (µm)	Features
	BX90S				_	-	 For high speed finishing to roughing of cast irons and rolled steels. Solid CBN. Higher heat conductivity.
	BXC90		3900-4100	1.80-1.90	(PVD)	1	 Coated solid CBN. In addition to feature of BX90S, used corners are known at a glance.
K Cast irons	BX930		3000-3200	0.95-1.20	-	-	 Used for high-speed turning of grey and ductile cast irons. Features moderate content of CBN sintered with special ceramic binder and excels in impact resistance.
	BX950		3900-4100	1.80-1.90	_	-	 Used for high-speed turning of heat resisting alloys, ferrous metals and cast irons and high- speed milling of cast irons. Hardest T-CBN grade featuring high content of CBN sintered with cobalt based binder. Provided with high transverse rupture strength comparable with cemented carbides.
	BX850		3300-3500	0.75-0.85	_	-	 Used for turning of grey cast irons. Features moderate content of CBN sintered with special ceramic binder and excels in impact resistance.


Polycrystalline Cubic Boron Nitride Compacts (PCBN), T-CBN

	_			Transverse	Coating	layer	
Application	Grade	Microstructure	Hardness (Hv)	rupture strength (GPa)	Main composition	Thickness (µm)	Features
	BX950		3900-4100	1.80-1.90	-	-	 Used for high-speed turning of heat resisting alloys, ferrous metals and cast irons and high- speed milling of cast irons. Hardest T-CBN grade featuring high content of CBN sintered with cobalt based binder. Provided with high transverse rupture strength comparable with cemented carbides.
S Difficult-to- cut materials	BX450		3100-3300	0.95-1.05	_	-	 Applicable for machining ferrous sintered metal (especially for valve seats). Features fine grained CBN sintered with a special ceramic binder. Excels in chipping resistance and finished surface roughness.
	BX470		4100-4300	1.90-2.10	_	-	 For ferrous sintered material. Extremely sharp cutting edge for excellent surface finish at minimum burr occurence.
	BX480		4100-4300	1.90-2.10	_	-	 For ferrous sintered material and hardened roll steels. It is highest of CBN contents and hardness in T-CBN grades.
	BX310		2700-2900	0.80-0.90	-	_	 Suitable for high-speed continuous turning of hardened steels and other hard materials with hardness of 54 to 65 HRC. Features fine grained CBN sintered with a special ceramic binder and especially excels in wear resistance.
н	BXC30		2800-3300	0.85-0.95	(PVD)	2	 Suitable for continuous to light interrupted turning of hardened steels and other materials with hardness of 54 to 65 HRC. Features fine CBN grain sintered with special ceramic binder and smooth surface of newly developed PVD coated layer. Excels wear resistance and good surface roughness
Hard materials	BX330		2800-3300	0.85-0.95	_	-	 Suitable for continuous to light interrupted turning of hardened steels and other hard materials with hardness of 54 to 65 HRC. Features fine grained CBN sintered with a special ceramic binder and excels in wear resistance and surface roughness.
	BX360		3200-3400	1.00-1.10	(PVD)	-	 Used for light to heavy interrupted turning of hardened steels and other hard materials with hardness of 54 to 65 HRC. Features fine to medium sized grain CBN sintered with a special ceramic binder and excels in impact resistance.
	BXC50		3500-3700	1.15-1.30	_	2	 Suitable for light interrupted to heavy interrupted turning of hardened steels and other hard materials with hardness of 54 to 65 HRC. Features medium grain sized CBN sintered with a special binder. T-CBN grade with special PVD coating layer.
	BX380		3500-3700	1.15-1.30	_	_	 Used for heavy interrupted turning of hardened steels and other hard materials with hardness of 54 to 65 HRC. Features medium grained CBN sintered with a special ceramic binder and excels in impact resistance.

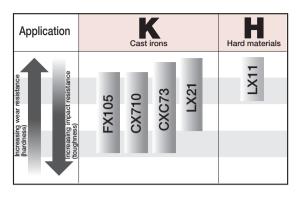
Polycrystalline Diamond Compact (PCD), T-DIA

Diamond is the hardest known material on earth. This is an advanced diamond-based tool material, in which tiny diamond crystals are tightly sintered on the cemented carbide alloy base by means of a super high-pressure and -temperature process. When compared with the single-crystal diamond, the hardness is slightly lower, but PCD is uniform in structure. Additionally the heat resistance performance of single-crystal diamond can differ according to the crystal quality and orientation. PCD is therefore optimum for cutting of non-ferrous and non-metal materials.

Comparison of hardness

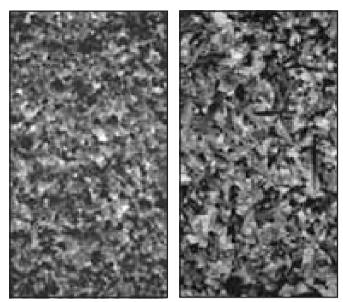
Tool material	Knoop hardness (Hk)
T-DIA	6000 ~ 9000
Natural diamond	8000 ~ 12000

Structure of T-DIA


Application	Grade	Microstructure	Diamond content Vol. %	Grain size (μm)	Hardness (Hv)	Strength (GPa)	Features
	DX120		88.0	4.5	9000	1.8	 For precision machining of non-ferrous metals and nonmetals where high-quality surface finish is required. Features the finest grain structure in T-DIA series and excels in grindability and cutting edge sharpness.
N	DX140		91.0	12.5	10000	1.7	 Used for machining of non-ferrous metals and nonmetals. Composed of medium and fine grain diamond, provides moderate wear resistance and grindability.
Non-ferrous metals	DX160	The state	94.0	28	11000	1.6	 Can be used for machining half-sintered ceramics and cemented carbides, stones, and non-ferrous metals. Mixed sintered compact composed of large and fine grain diamond. Grindability is superior to that of DX180.
	DX180	1. Har 1	96.5	45	12000	1.5	 Best suitable for turning half-sintered ceramics and cemented carbides. Features the highest purity and large grain PCD with excellent wear resistance.

Regrinding method

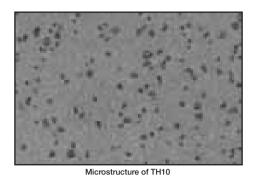
T-DIA Grade	DX180, DX160, DX140, DX120			
Wheel	Diamond wheel			
Bond	Vitrified bond			
Grain size	Roughing: #400~600 Finishing: Finer than #1000			
Concentration	100 ~ 125			
Grinding speed	900 ~ 1200 m/min			


465

Ceramics

Our ceramics consist of high-purity fine powder oxides, nitrides, and carbides sintered through normal pressure, gas pressure and HIP sintering. The fine and dense structure ensures superiority in wear resistance, adhesion resistance, oxidation resistance and heat resistance.

These grades enable high-speed cutting over a wide range from finishing to light cutting, offering high accuracy and high quality finished surfaces. Ceramics grades are classified into aluminabase and silicon-nitride-base groups, each selectable according to the application.

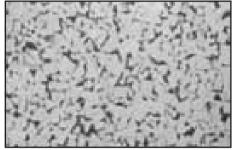

Microstructure of LX11 (SEM)

Microstructure of FX105 (SEM)

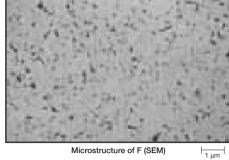
Application	Grade (Color)	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Fracture Toughness K1c (MPa•m ^{1/2})	Modulus of elasticity (GPa)	Features
	FX105	3.24	93.0	1.3	6.1	290	 A silicon nitride based ceramics used for high speed cutting of cast irons. Has superior strength, toughness and
	Grey	3.24	93.0	1.3	0.1	290	thermal characteristics compared with alumina-base ceramics.
	CX710	3.20	92.9	1.1	6.3	290	 SisN4-based ceramics for high speed cutting of cast irons. Higher of toughness and heat conductivity
K	Grey	0.20					than FX105.
Cast irons	LX21	4.24	94.0	0.8	4.3	370	 Al2O3-based ceramics for continuous cutting of cast irons. With adding titanium carbide to alumina, its toughness is improved while maintaining excellent wear resistance.
	Black	т.ст					
	CXC73	3.24	93.0	1.3	6.1	290	 CVD coated Si₃N₄ -based ceramics. Excels good wear resistance and long tool life by thick and stable α-Al₂O₃ layer.
	Gold	0.2 1	93.0				The by thick and stable 0-AI203 layer.
Hard	LX11	4.35	94.0	0.9	4.3	400	 Al₂O₃-based ceramics used for continuous turning of ferrous hard materials. Improved strength and toughness by fining
materials	Gold			0.0		400	down the crystallized particles of alumina and titanium carbonitride.

Uncoated Cemented Carbides (Tungaloy Cutting Tool Grades)

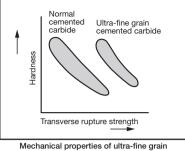
Cemented carbide, Tungaloy, is manufactured by sintering refractory carbide such as tungsten carbide (WC), titanium carbide (TiC), and tantulum carbide (TaC) powders with a binder metal like cobalt (Co). Our unique development and manufacturing technologies and stringent quality control ensure that Tungaloy has superior hardness (wear resistance) and strength (toughness) from room to high temperature range. Superiority in mechanical and thermal resistance when compared with the high-speed steel allows this alloy to be widely used in various cutting tools, wear and impact resistant tools and machine parts and civil-engineering or -mining tools.



Application	ISO Application code	Tungaloy Grade	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Compressive strength (GPa)	Modulus of elasticity (GPa)	Thermal expansion coefficient (X10 ⁻⁶ /K)	Thermal conductivity (W/m•K)
	P10	TX10S	10.5	91.8	1.9	4.5	500	6.4	18
	P20	TX20	11.8	91.5	2.1	4.7	520	5.8	35
	P20	TX25	11.8	91.5	2.2	4.7	540	5.7	38
P Steels	P20	UX25	12.3	90.9	2.5	4.9	530	5.8	34
Oleeis	P30	ТХ30	12.6	90.8	2.3	4.9	560	5.8	48
	P30	UX30	12.6	91.1	2.3	4.9	490	5.8	38
	P40	TX40	12.7	89.9	2.4	4.6	520	5.5	52
	M10	TU10	13.0	92.3	2.0	4.9	550	5.8	41
	M20	TU20	13.5	91.3	2.4	4.8	580	5.5	57
Stainless	M20	UX25	12.3	90.9	2.5	4.9	530	5.8	34
steel	M30	UX30	12.6	91.1	2.3	4.9	490	5.8	38
	M40	TU40	12.4	88.7	2.7	4.3	520	5.7	31
	K05	ТН03	13.8	93.8	1.9	6.2	590	5.3	99
	K10	TH10	14.7	92.0	2.4	6.1	620	5.4	97
	K10	G1F	15.1	92.0	2.6	6.1	660	5.3	101
Cast irons	K20	G2F	14.9	91.5	2.7	5.2	630	5.4	99
	K20	G2	15.0	90.8	2.7	5.2	640	5.4	99
	K20	KS20	14.5	90.8	2.8	6.1	620	5.4	96
	K30	G3	14.8	90.3	3.1	4.8	620	5.4	95
Ν	N05	KS05F	15.0	93.0	2.9	5.9	640	5.4	90
Non-ferrous metals	N10	TH10	14.7	92.0	2.4	6.1	620	5.4	97
S	S10	TH10	14.7	92.0	2.4	6.1	620	5.4	97
Super alloys	S20	KS20	14.5	90.8	2.8	6.1	620	5.4	96
Η	H05	ТН03	13.8	93.8	1.9	6.2	590	5.3	99
Hard materials	H10	TH10	14.7	92.0	2.4	6.1	620	5.4	97


Micro-Alloy

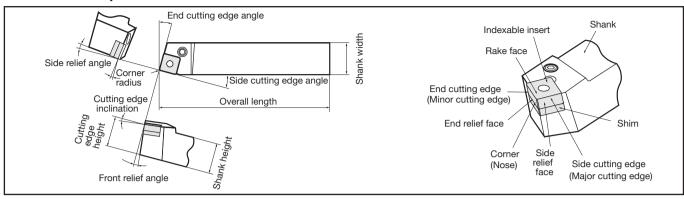
467


Ultra-fine Grain Cemented Carbides (Micro-Alloy)

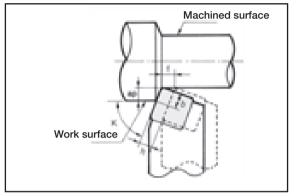
Microstructure of EM10 (SEM)

cemented carbide

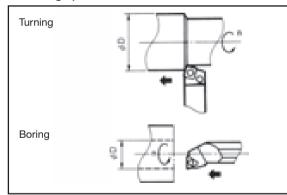
Micro-Alloy is characterized by the WC hard phase (major component) which is extremely fine (average particle size 1 μ m or less) when compared with normal cemented carbide alloys. This ensures higher strength (toughness) than the usual carbide alloy of the same hardness. Besides, this alloy demonstrates the


1 μn

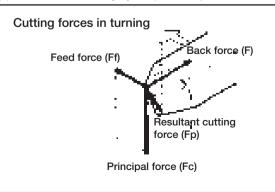
high performance within the application range of high-speed steel tools. This is appropriate for the cutting tools when the workpiece is too small to achieve the high cutting speed or for a smalldiameter end mill or drill.


Grade	Specific gravity	Hardness (HRA)	Transverse rupture strength (GPa)	Compressive strength (GPa)	Modulus of elasticity (GPa)	Thermal expansion coefficient (X10 ⁻⁶ /K)	Thermal conductivity (W/m•K)	Features
F	14.9	93.4	2.5	6.9	640	5.4	85	 Hardest Micro-Alloy excels in wear resistance and cutting edge sharpen- ability. Suitable for conditions of low speed, small cutting depth, and low feed. Mainly used for small tools such as for automatics.
м	14.5	92.5	2.8	6.4	580	5.6	74	 Used for conditions of low speeds, small to medium cutting depths, and low to medium feeds. Tougher than F.
EM10	14.0	91.5	3.4	6.4	550	5.7	70	 Used for solid end mills and other milling cutters. Provided with superior resistance to micro-chipping.
UM	13.9	90.9	3.5	5.8	520	5.8	67	 Toughest Micro-Alloy grade. Excels in impact resistance. Can withstand light impacts. Used for milling.

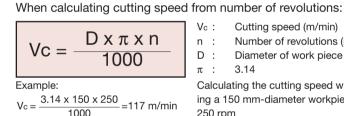
Turning Tools


Name of tool parts

Relating angles between tool and workpiece



Calculation formulas for turning Cutting speed


Cutting forces

(1) Finding from the diagram based on experimental data. (2) In case determining by simplified equation:

- ap: Cutting depth (Distance between work surface and machined surface)
- Length of cutting edge engaging in cutting. b:
- Cutting edge angle (Angle to be made by cutting edge and K: work surface)
- f: Feed per revolution
- Thickness to be cut per revolution h:

Machined surface: Workpiece surface after having machined. Work surface: Workpiece surface to be cut.

- Cutting speed (m/min)
- Number of revolutions (rpm) n :
- D : Diameter of work piece (mm) π : 3.14

Calculating the cutting speed when turning a 150 mm-diameter workpiece at 250 rpm

When calculating required number of revolutions from cutting speed:

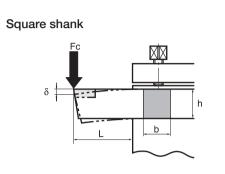
$$n = \frac{1000 \text{ x Vc}}{\pi \text{ x D}}$$

$$Fc = ks x an x f$$

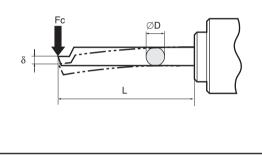
- Fc : Cutting force (kgf)(N)
- ks : Specific cutting force MPa (N/mm²)
- ap: Cutting depth (mm)
- f : Feed (mm/rev)

Example:

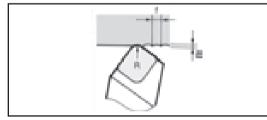
Calculating the cutting force when cutting a high carbon steel (Ck55) at feed f = 0.2 (mm/rev) and cutting depth ap = 3 (mm)Fc = 4500 x 3 x 0.2 = 2700N


Values of ks Work materials MPa (N/mm²) kgf/mm²

Carbon steels	2500~4500	250~450
Alloy steels		
Cast irons	1500~3500	150~300


Turning Tools 469

• Calculation of power consumption


Bending stress and tool deflection

Round shank

• Theoretical surface finish

• Tool Geometry

• Effects of tool geometry on cutting phenomena

Phenomena	Flank wear	Crater	Edge	Cutting	Surface	Chattaring	Cutting	Chip
Increasing	FIAITK WEAT	wear	strength	force	finish	Chattering	temperature	flow
Cutting edge inclination	_	Decrease	Lower	Radial force		Less	Lower	Effect on
Cutting edge inclination	_	Declease	Lower	decrease	_	tendency	Lower	flow direction
Side rake angle		Decrease	Lower	Decrease			Lower	Effect on
	_	Declease	Lower	Decrease	_	_	Lower	shape
Relief angle	Decrease	_	Lower	Decrease	_	Likely to	Lower	_
	Decrease					occur		_
End cutting edge angle	Decrease	_	Lower	Radial force	Roughen	Less	Lower	_
	Decrease		Lower	decrease	noughen	tendency	Lower	
Side cutting edge angle	Decrease	Decrease	Increase	Radial force		Likely to	Increase	Decrease
Side cutting edge aligie	Decrease		Increase	increase	_	occur	Increase	thickness
Nose radius	Decrease to	some level	Increase	Increase	Improve	Likely to	Increase	Effect on
1036 140103	Decrease to some lev		Increase	Increase	impiove	occur	increase	flow direction
Honing width	Increase	_	Increase	Increase	_	Likely to	Increase	_
	increase	_	increase	increase		occur	increase	_

$$\mathsf{Pc} = \frac{\mathsf{Fc} \times \mathsf{Vc}}{60000 \times \eta}$$

Bending stress (1) Square shank

$$S = \frac{6 \text{ x Fc x L}}{b \text{ x h}^2}$$

(2) Round shank

S =

 $\pi \times D^3$

Deflection of toolpoint (mm) (1) Square shank

$$\delta = \frac{4 \text{ x Fc x } \text{L}^3}{\text{E x b x } \text{h}^3}$$

(2) Round shank

$$\delta = \frac{64 \text{ x Fc x } \text{L}^3}{3 \text{ x } \pi \text{ x E x } \text{D}^4}$$

$$Rt = \frac{f^2}{8R} \times 1000$$

Rt: Surface finish (µm)

f : Feed (mm/rev) R : Nose radius (mm)

D : Diameter of shank (mm)
 E : Modulus of elasticity of shank material (N/mm²)
 S : Dandia (N/mm²)

h: Height of shank (mm)

Fc: Cutting force (N)

Pc: Power requirement (kw) Fc: Cutting force (N)

Refer to previous page Vc : Cutting speed (m/min)

 η : Efficiency of machine (0.7 ~ 0.85)

S : Bending stress in shank (MPa(N/mm²))

MPa (N/mm²)

210000

560000-620000 56000-62000

kgf/mm²

21000

L: Overhang length of tool (mm) b: Width of shank (mm)

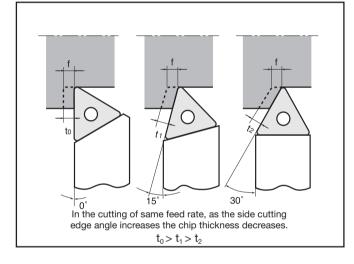
 δ : Bending (mm)

(Ref.) Values of E

Material

Steel

Cemented


Carbide

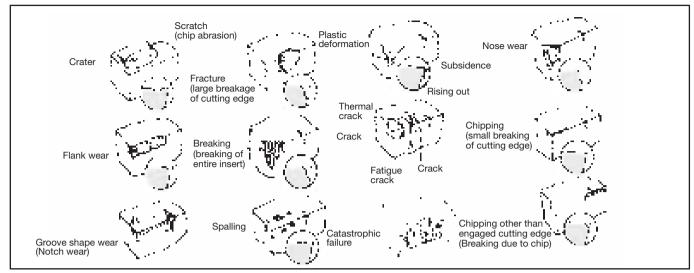
π:3.14

Angle	Operation	Angle
	General turning (TAC tools)	-6° ~ +6°
Cutting edge	(Brazed tools)	$0^{\circ} \sim +6^{\circ}$
inclination	Interrrupted turning	-6° ~ -3°
	Planing, shaping	-15° ~ -5°
	General turning (TAC tools)	-6 ° ~ +5°
Side cutting	(Brazed tools)	+6°
edge angle	Hard materials	-10° ~ 0°
ougo ungio	Soft materials	+15° ~ +30°
	Interrupted turning	-5° ~ -15°
	General turning (TAC tools)	5° ~ 8°
	(Brazed tools)	6°
Relief angle	Non-ferrous metals	7°
	Glass, ceramics	5°
	Wood	5° ~ 8°
End cutting edge angle		Variable
Side cutting edge angle		Variable

• General recommendation for tool geometry

• Effect of side cutting edge angle

• General recommendation for nose radius


	6		
	Work material	Steels, aluminium	Cast iron,
S	Cutting depth (mm)	alloys, copper alloys	non-metals
Guidelines	~ 3	0.4	0.8
uide	4 ~ 9	0.8	1.6
Ū	10 ~ 19	1.6	2.4
	20 ~	2.4	3.2
Formula (mm)		Cutting depth ap \div 8 = a Feed f x 2 = b Larger size of a a or b	Cutting depth ap \div 4 = a Feed f x 4 = b Larger size of a or b

• Honing

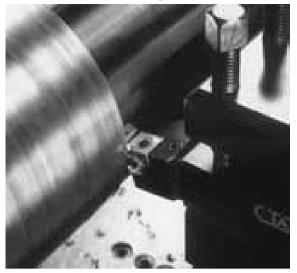
TAC indexable inserts of steel cutting grades are honed. Honing specifications are shown in the following table.

Symbol	Edge condition	Shape
F	Sharp edge	
Е	Round honing	[
W•T	Chamfered honing	<u></u>
S	Chamfered and round honing	ſ

• Types of tool failure (respresentative)

	Wear Flank wear	A typical form of wear is mechanical wear (plowing). There is no effect of heat, rather it is a phenomenon of gradual scraping off by abrasion, resulting in a rough face as if scraped with a plow.
	Face wear Crater wear	The main cause of thermal wear is the cutting temperature. High temperature and temperature adhesion will diffuse with part of the cutting face.
	Nose wear	Mechanical or thermal wear occured on tool nose.
	Notch wear	Wear occurring at contact boundary (side cutting edge and end cutting edge) between the work material and tool.
	Chipping	Small fractures on cutting edge, such as due to mechanical shock, thermal shock, chip welding and chip recutting.
ure	Fracture	Large fracture on cutting edge.
Tool failure	Breaking	Complete damage to insert.
00	Breaking in two	Breaking of long tools such as drill and endmills.
	Flaking (Spalling)	Shell-like damage on rake face and flank.
	Plastic deformation	Softening of the tool material due to rise in tip temperature, unable to withstand cutting force and cutting edge deformation by subsiding or building up.
	Crack Thermal crack	Occurs mainly on the rake face but also noted on flanks. Initially occurs at right angle to the cutting edge but as the number increases is generated in parallel direction and chips off in "U" shape.
	Fatigue crack	Cracks occurring parallel to the cutting edge as the result of repetitive mechanical stress being applied due to impact and cutting force accompanying interrupted cutting. In comparison with themal crack, occurs immediately adjacent to cutting edge.
	Catastrophic failure	With the advancement of wear, complete loss occurs over a considerable part of the cutting cross section and cutting becomes impossible.

• Tool life criterion on JIS


Width of flank wear	0.2 mm	Precision light cutting, finishing of non-ferrous metal alloys, etc.
Width of flank wear	0.4 mm	Cutting of special steels
Width of flank wear	0.7 mm	Ordinary cutting of cast iron and steels
Width of flank wear	1 ~ 1.2 mm	Rough cutting of grey cast iron
Depth of crater		Normally 0.05 - 0.1 mm

• Tool life criterion on ISO

Tool life criterion	Application
Catastrophic failure	High speed steel tools (VB can also be applied)
Flank wear width VB = 0.3 mm	Cemented carbide and ceramic tools displaying uniform flank wear
VB max = 0.5 mm	In case of uneven flank wear is caused
Depth of crater KT = 0.06 + 0.3 f (mm) (where f represents feed mm/rev)	Cemented carbide tools
Determination according to roughness 1, 1.6, 2.5, 4, 6.3, 10 μm Ra	In case roughness is essential

473

Chip forming

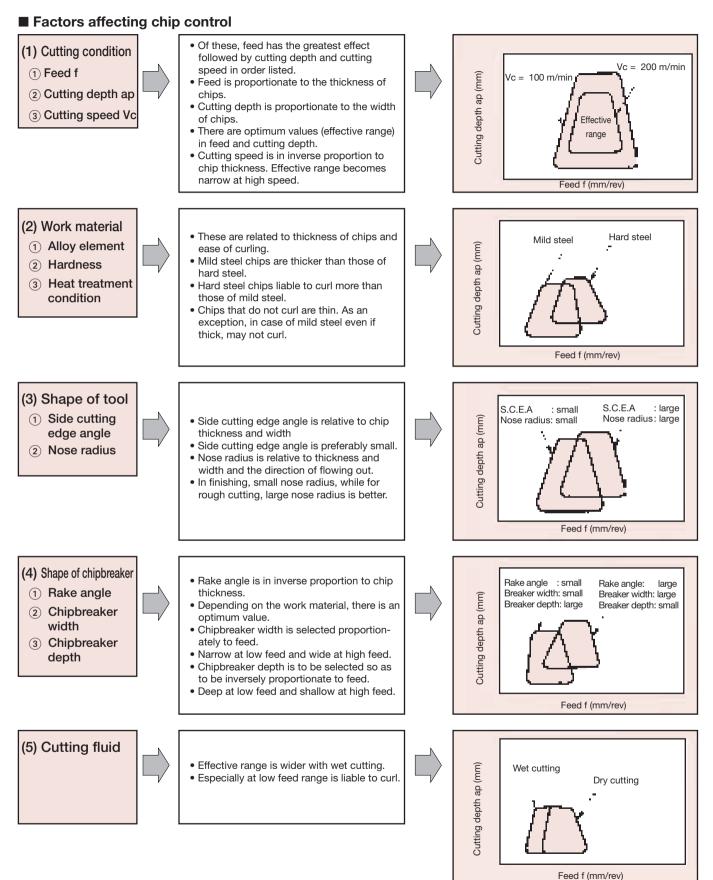
■ Chip control performance

(1) Necessity

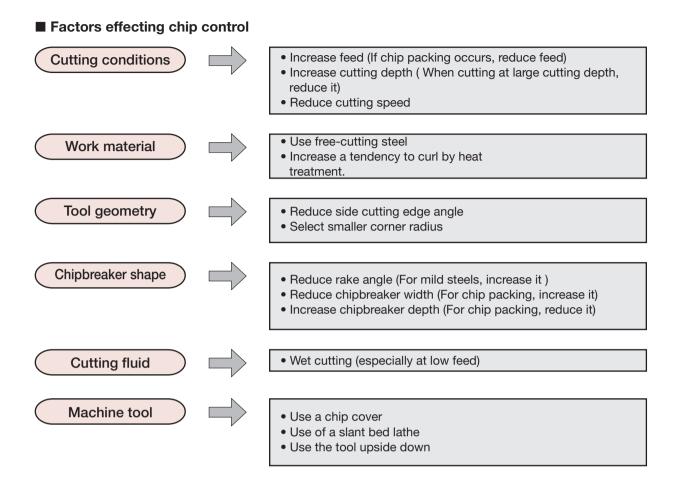
As machining is rationalized more and more, the necessity of controlling chips has also changed in details.

To ensure improvement of productivity and to reduce costs, controlling measures must be implemented to prevent following problems:

Problems:

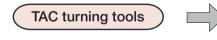

- Scattering of chips
- Entangling of chips to the workpiece and tool
- Accumulation of chips around the tool

Troubles:


- Hindrance to unmanned and automatic operation
- Hindrance for multi-cutting edge tooling, higher speed, and higher efficiency operation
- Hindrance to the accuracy of machine tools
- Deterioration of product quality
 Trouble according the safety of operators
- Shorter tool life
- Lower operation rate

■ Chip shape classification and effects

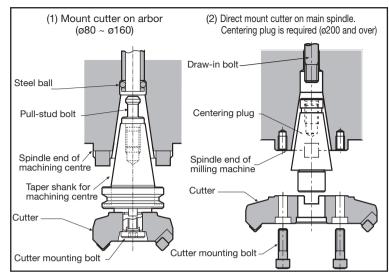
Classi- fication	Chip s	shape	Description of	Accepta	bility	Effect
Cla fica	Cutting depth: small	Cutting depth: large	chip shape	roooptability		Ellect
Shape A		(Marging	Chips irregularly entangled	Not acce	ptable	 Wrapping around the tool or workpiece or accumulation around the cutting point, hindering cutting Possible damage to the machined surface
Shape B		generative ce	Long continuous spiral chips $\ell > 50 \text{ mm}$			 Bulky during transport in the automatic line May be preferred when one operator handles one machine
Shape C	11		Short spiral chips $\ell < 50 \text{ mm}$	Accentaria		 Smooth chip flow Difficult to scatter Favorable shape
Shape D		20000 2000 2000 2000 2000 2000 2000 20	"C" or "9" shaped chips (Around one coiling)	Δοτο		 Favorable shape if not scattering Not bulky and easy to transport
Shape E	5.50		Excessively broken chips. Thin pieces or connected in a form of wave as shown in the figure left	Not acce	ptable	 Readily scattering. If scattering is the only trouble, it may be acceptable because the chip cover, etc. may be used. Tend to cause chatter, causing harms on the finished surface roughness or tool life.


475

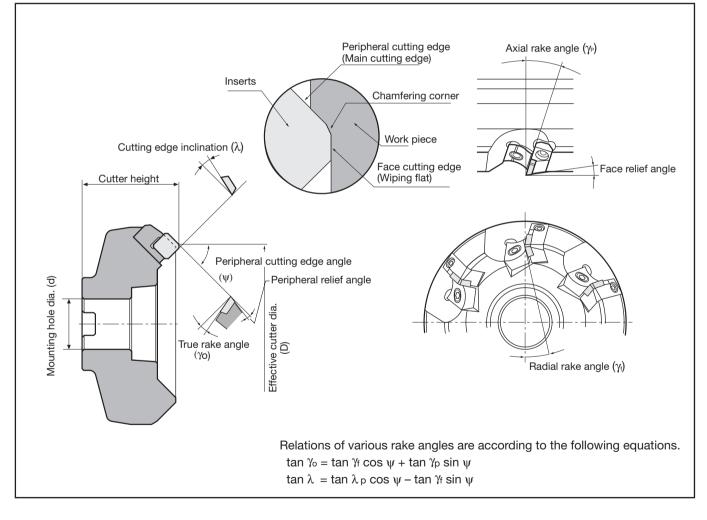
Chipbreaker selection

The most effective method among the factors listed above is a control with a chipbreaker.

For selecting a proper chipbreaker type for the operation, refer to the relating pages shown below.


• Chipbreaker selection guide: P. 27 ~ 36

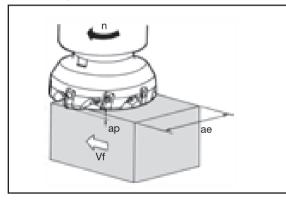
• Chipbreaker comparison chart: P. 499 ~ 500

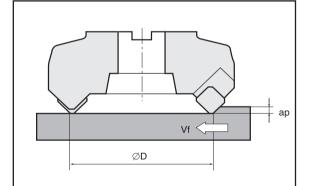

Milling Tools

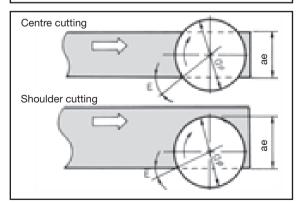
Mounting face mill

- In mounting to end of the main spindle of the milling machine, there are two methods shown in figures at right.
- In case using at machining center, use exclusive arbor (BT shank····MAS standard) enabling ATC.
- Shank type TAC mill (E series), same as endmill, is mounted on the machine with a milling chuck available on the market.

■ Nomenclature for face milling cutter (Symbols conformed to JIS)




Cutter geometry and applications


		Delve eng	la aambina	tion and an	nlinghility/			
	_		Rake angle combination and applicability					
Work r	naterial	Negative-Negative	ve-Negative Negative-Positive		Positive-Positive			
		Negative true rake angle	Negative true rake angle	Positive true rake angle	Positive true rake angle			
Cast irons Ductile cast irons		O	0	0	O			
	Low to medium carbon steels		0	O	O			
Special	Stainless steels	×	\triangle	O	0			
Special steels (<	Heat resisting steels	×	\triangle	O	0			
400 HB)	Tool steels	Δ	Δ	O	0			
Aluminium alloys		×	×	0	O			
Copper and its alloys		×	Δ	0	O			
Titanium a	nd its alloys	×	Δ	0	0			

©: Excellent	⊖ : Good	\triangle : Fair	× : Not recommended

Cutting conditions

Туре	Rake angle			Features	Typical examples of	
Type	$\gamma_{\rm f}$	γ_{p}	γ_0	realures	TAC mills	
Negative type (Negative- Negative)	_	_	_	 Usable cutting edges are doubled and economical 	TGN4200-A	
Negative-	_	+	+	 Excellent chip removal 	TME4400I TAD12	
positive type	_	+	_	 Higher cutting edge strength 	TPN6400I (not shown in this catalogue)	
Positive type (Positive- positive)	+	+	+	 Freer cutting action 	TMD4100I	

 $\gamma_{\rm f}$: Radial rake angle $~\gamma_{\rm p}$: Axial rake angle $~\gamma_{\rm 0}$: True rake angle

Cutting speed

$$V_{c} = \frac{\pi \times D \times n}{1000} \text{ (m/min)}$$

- $V \mbox{\scriptsize c}$: Cutting speed (m/min)
- D : Effective diameter (mm)
 - n : Number of revolutions (rpm) π : 3.14

Number of revolutions (Calculated from cutting speed)

$$n = \frac{1000 \times V_c}{\pi \times D} \text{ (rpm)}$$

• Feed speed and feed rate

Feed speed is relative speed of cutter and work material and in the normal milling machine, it is the table speed.

In milling, the feed per tooth is very important. The recommended cutting condition is expressed by Vc and ft and using the above equation calculate n and Vf and input in the machine.

$$Vf = ft \times t \times n \text{ (mm/min)}$$

- Vf : Table feed (mm/min)
- ft : Feed rate per tooth (mm/t)
- t : No. of teeth of the cutter
- n : Number of revolutions (rpm)

Cutting depth

Determine by required allowance for machining and capacity of the machine. In case of TAC mill, there are cutting limits according to shape and size of the insert.

• Cutting width and engage angle

There is an appropriate engage angle depending on the cutter diameter, cutting position, work material, etc., and ordinarily the values in the table below are used as a guide.

Work material	Appropriate E	Cutter dia. and ae
Steel	0 ~ 20 [°] (on small side for shoulder cutting)	ae = 2/3D
Cast iron	under 40°	ae = 4/5D

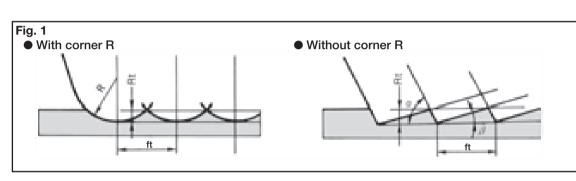
- D : Cutter diameter (mm)
- E : Engage angle (°)
- ae : Cutting width (mm)

Roughness of finished surface

(1) Theoretical surface roughness Theoretical roughness as shown in Fig. 1 is the same as for single point turning

 $\mathsf{Rt} = \mathsf{ft} \left(\frac{\mathsf{tan}\alpha \cdot \mathsf{tan}\beta}{\mathsf{tan}\alpha + \mathsf{tan}\beta} \right) \mathsf{x} \ \mathsf{1000}$

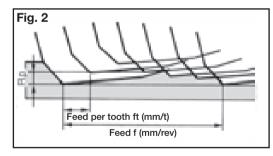
• With corner R

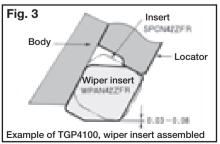

$$Rt = \frac{ft^2}{8R} \times 1000$$

$$Rt = \frac{ft^2}{8R} \times 1000$$

$$Rt : Theoretical roughness (µm) ft : Feed per tooth (mm/t) R : Corner radius (mm) a : Corner angle g : Face cutting edge angle for the formula of the second s$$

• Without corner R


r R


(2) Practical surface roughness

However, in case of practical milling, there are many teeth and naturally differences in levels of edges occur. The maximum difference is called "run out".

In the actual face milling, finished surface roughness, as shown in Fig. 2, is worse than the single point cutting. In case only one tooth is projecting, it will be similar to the single point shown in Fig. 1 but of a large value substituting f (mm/rev) for ft (mm/tooth).

Improving surface roughness

Preferably face run out to be minimized and low feed at high speed. Also, in order to attain good finished surface at high efficiency, there are the following methods:

- (1) In case of ordinary TAC mill Use wiper insert as shown in the figure at left.
- (2) Use of TAC super finish mill for finishing Cut with TAC mill exclusively for finishing such as MS cutters.

Milling Tools 479

Calculating power requirement

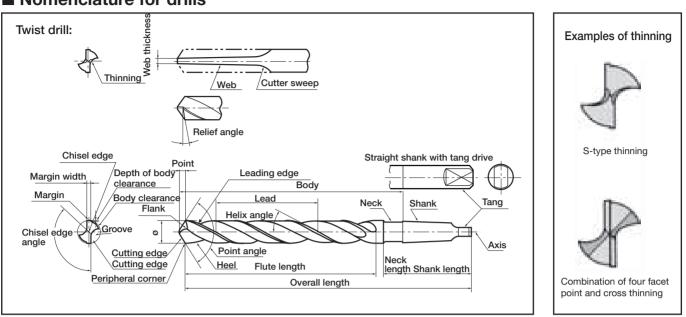
 $\label{eq:Pc} \mathsf{Pc} = \frac{\mathsf{ks} \times \mathsf{ap} \times \mathsf{ae} \times \mathsf{Vf}}{60 \times 1000 \times 1000} \; \text{(kW)}$

- Pc: Net power requirement (kW)
- ks : Specific cutting force MPa (N/mm²) (Refer to the Table below)
- ap: Cutting depth (mm)
- ae : Cutting width (mm)
- Vf : Table feed (mm/min)

Because practical power requirements depend on the type of TAC mill (proportional to the true rake angle) and the motor efficiency of the machine used, the result calculated from the above formula should be considered as a rough guide.

• Values of specific cutting force (ks)

Work material	Tensile strength		Feed per tooth ft (mm/t)					
WORK Material	MPa (N/mm ²)	{kgf/mm ² }	0.1	0.15	0.2	0.3	0.4	
Mild steel USt42-2	520	52	2150	2000	1900	1750	1650	
Carbon steel Ck55	770	77	1970	1860	1800	1760	1620	
Cr-Mo steel	730	73	2450	2350	2200	1980	1710	
Alloy tool steel 55NiCrMoV6	(352HB)	(352HB)	2030	2010	1810	1680	1590	
Steel casting GS-45	520	52	2710	2530	2410	2240	2120	
Grey cast iron GG25	(200HB)	(200HB)	1660	1450	1320	1150	1030	
Aluminium silicon alloy	200	20	660	580	522	460	410	
Brass	500	50	1090	960	877	760	680	


Note: Values in parenthesis show hardness.

Troubleshooting in milling

Trouble	Possible causes	Countermeasures
_	Improper insert grade selection (Insufficient	• P30 \rightarrow P20 \rightarrow cermet, coated grade (steel cutting)
Rapid wear of	wear resistance)	• K20 \rightarrow K10 \rightarrow coated grade (cast iron cutting)
cutting edge	Excessive cutting speed	Select cutting speed suited for work material and insert grade
	Inadequate feed	Use standard cutting condition in catalog as guide
	Improper insert grade selection	• Cermet \rightarrow P20, P30 (steel cutting), K10 \rightarrow K20 (cast iron cutting)
	Cutting hard material and	Decrease cutting speed
Rapid chipping	unfavorable surface condition	Use cutter with strong cutting edge
of cutting edge	Excessive feed	• Select proper feed conditions as per recommendation in catalogue
	• Excessive pressure applied on cutting edge	Proper selection of engaging angle
	 Machining difficult-to-cut material 	 Use a negative-positive type cutter with large corner angle (Ex. TAW)
	Cracking due to thermal shock	Select insert grade of stronger thermal shock resistance such as T3030
		Decrease cutting speed
	 Too thin insert against cutting force 	Change from 3.18 mm into 4.76 mm insert thickness
	Continuous use of excessively worn insert	Shorten replacement standard time of insert
	Cutting hard material	Use cutter of stronger tip
		Use cutter of larger corner angle such as TMD
Fracturing	Obstruction to chip flow	Use cutter with good chip discharge properties such as TMD
	 Recutting of chips after chip welding 	Select insert grades difficult for chips to adhere
		Cemented carbides → cermets, coated grades
		Use cutting fluid or air
	Excessively slow cutting, too fine feed	 Select cutting speed and feed optimized for insert grade and work material
Excessive chip welding or	 Cutting soft material such as aluminium, copper, mild steel 	Use cutter with large rake angle such as THF
build-up on	Cutting stainless steel	• P30 → Cermet
cutting edge	 Use of cutter with negative rake or too small rake angle 	Use cutter with large rake angle such as TAW
	Effect of built - up edge	Increase cutting speed
		Appropriate cutting depth (finish allowance)
		 Change insert grade, K grade→M grade→P grade→cermet
		For cast irons: P grade \rightarrow coated grade \rightarrow cermetFor steels: K grade \rightarrow coated grade
Rough finish	Effect of face cutting edge run-out	Proper installing of inserts
		 Use insert of high dimensional accuracy Class K → class E
	Continuous use of excessively worn insert	Shorten replacement standard time of insert
	Remarkable feed marks	Feed per revolution to be set within flatland width
		• Use wiper insert type cutter such as TAW
		Use cutter exclusively for finishing such as SFP4000
	Unstable clamping of workpiece	Check clamping method of workpiece
Chattering	Cutting of welded construction of thin steel plate	Adopt cutter of large rake angle and small corner angle such as TAW
	Excessive cutting condition	Re-examine allowable chip removal rate according to motor HP
	Face milling of narrow width workpiece	Use cutter of small cutter diameter and with many teeth
	 Too many simultaneous cutting teeth engagement 	Reduce No. of teeth or adopt irregular pitch cutter

Drilling Tools

■ Nomenclature for drills

Cutting forces and power requirement

(1) Twist drill

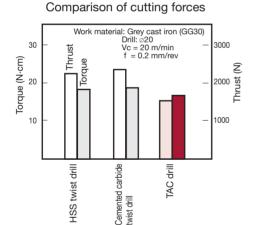
Power requirement

$$Pc = K \cdot D^2 \cdot n (0.647 + 17.29f) \times 10^{-6} (kW)$$

Thrust force

 $T = 570 K \cdot D \cdot f^{0.85} (N)$


Torque


 $M = K \cdot D^2 (0.630 + 16.84f) (N \cdot cm)$

Pc: Power requirement (kw)

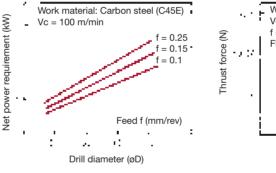
- T : Thrust force (N)
- M : Torque (N·cm)
- D : Drill diameter (mm)
- f : Feed (mm/rev)
- n : No. of revolutions (rpm)
- K : Material constant.... Refer to the Table at right

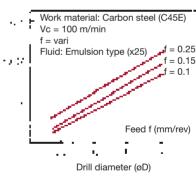
(2) TAC drill

Net power requirement for TAC drills

Thrust forces of TAC drills

Brinell


hardness


(HB)

Material

constant

(K)

Material constant compensating for power requirement and thrust force

Work material

Tensile strength

MPa (N/mm²) {kgf/mm²}

■ Troubleshooting for the solid drill and soldering drill

	Problem Cause Countermeasure					
	TODIEIII	Inappropriate cutting	Increase the cutting speed by 10% within standard conditions if abnormal wear is around the centre.			
	Relief surface	speed	• Lower the cutting speed by 10% within standard conditions if abnormal wear is on the periphery.			
		Inappropriate cutting	• Check the filter.			
ar		fluid	• Use the cutting fluid superior in lubricity (increase the dilution rate).			
Ň		Inappropriate cutting speed	• Lower the cutting speed by 10%.			
nal		Regrinding timing, insufficient reground amount	Shorten the regrinding timing.			
l nu		Insufficient rigidity of the machine and workpiece	Change the clamp method to the one with rigidity.			
Abnormal wear	Margin	Insufficient drill rigidity	Use smallest possible overhang.			
A		Inappropriate cutting	Check the filter.			
		fluid	• Use the cutting fluid superior in lubricity. (increase the dilution rate)			
		Intermittent cutting when entering	Avoid interruption at entry and exit.			
			• Lower the feed rate by about 50% during entering into and leaving from the workpiece.			
		Insufficient rigidity of	 Reduce the drill overhang as much as possible. 			
		the drill	• Increase the feed at entry when the low speed feed is selected in standard cutting condition range.			
	Chisel section		Use a bushing or a centre drill.			
	(centre of drill	Insufficient rigidity of the machine and workpiece	 Change the clamp method to the one with rigidity. 			
	cutting edge)	Inappropriate entry into	 Avoid interruption at entry into the workpiece. 			
	cutting edge)	the workpiece	Lower the feed rate by 10% at entry.			
lre		High workpiece hardness	Lower the feed rate by 10%.			
ctr		Inappropriate honing	 Check if honing has been made to the centre of cutting edge. 			
Chipping and fracture		Insufficient drill rigidity	• Lower the cutting speed by 10%.			
nd	Peripheral		Increase the feed at entry when the low speed feed is selected in standard cutting condition range.			
g a		Inappropriate drill mounting accuracy	Check the runout accuracy after drill installation (0.03 mm or less).			
oin	cutting edge	Insufficient machinery	Change the clamp method to the one with rigidity.			
dic		and workpiece rigidity	• Lower the feed during entering into and leaving from the workpiece.			
Ō		Inappropriate honing	Check if honing has been made to the cutting edge periphery.			
		Insufficient machine and workpiece rigidity	Change the clamp method to the one with rigidity.			
		Insufficient drill rigidity	Use smallest possible overhang.			
	Margin		Use a bushing or centre drill.			
		Regrinding timing and insufficient amount of reground stock	Shorten the regrinding timing.			
		Intermittent cutting when	Avoid interruption at entry and exit.			
		entering or exiting the cut.	• Lower the feed rate by about 50% during entering into and leaving from the workpiece.			
		Tendency to cause chipping or develop abnormal wear	Check the failure mode condition before breakage and find out the wear and chip countermeasures.			
		Chip packing in the drill	• Review the cutting conditions.			
	Breakage	flutes	• For internal coolant supply, raise the supply pressure of cutting fluid.			
	·		Use drill pecking for deep holes.			
		Insufficient machine	Review the cutting conditions.			
		output	Use the machine with high power.			
		Insufficient rigidity of the machinery and workpiece	Change to the clamp method with rigidity Check the runout accuracy of drill mounting (0.03 mm or loss)			
Inc	ufficient hole	Inappropriate drill installation accuracy	Check the runout accuracy of drill mounting. (0.03 mm or less)Review the cutting conditions.			
Insufficient hole		Chip packing in the	_			
	accuracy	flutes.	Raise the cutting oil supply pressure.			
		Inannyanyiata adaa ahaynaying accurr	Use peck-feed for deep holes. Check the edge shape accuracy.			
		Inappropriate edge sharpening accuracy	Check the edge shape accuracy.			
Dwe	longed chine	Inappropriate cutting conditions				
Pro	olonged chips	Inappropriate honing	Provide the appropriate honing.			
		Cutting edge with chipping or breakage	Lower the cutting speed by 10%.			

Troubleshooting for TAC drill

	Prot	olem	Cause	Countermeasure		
	Central cutting edge	Relief surface	Inappropriate cutting conditions	Increase the cutting speed by 10% within standard conditions.Lower the feed rate by 10%.		
	Peripheral cutting edge	ing Relief surface Inappropriate cutting conditions		 Increase the cutting speed by 10% within standard conditions. When the feed rate is extremely low or high, set it up within standard conditions 		
			Varieties and supplying of cutting fluid	 Confirm that the cutting fluid flow is higher than 7 l/min. The concentration of cutting fluid must be higher than 5%. Use the cutting fluid superior in lubricity. Change from external to internal cutting fluid supply. 		
Abnormal wear		Relief surface	Vibration in drilling	 Change to the machine with higher torque. Change to the clamp method with rigidity. Change the drill setting method. 		
ouc			Unsuitable for selection of grade	Change the grade to T1015.		
₹	Common		Looseness of screws	Tighten the screw.		
		Crater	Cutting heat is too high	 Change from external to internal cutting fluid supply. Increase the supply rate of the cutting fluid. (Higher than 10 l/min) Lower the feed rate by 20% within standard conditions. Lower the cutting speed by 20% within standard conditions. 		
			Excessive chip welding	 Lower the feed rate by 20% within standard conditions. Lower the cutting speed by 20% within standard conditions. 		
		Chipbreaker Chip packing		 Increase the cutting speed by 20% and lower the feed rate by 20% within standard conditions. Raise the fluid pressure. (for higher than 1.5 MPa) 		
		The rotation center of drill	The misalignment for workpiece rotation	• Set the misalignment to 0 ~ 0.2 mm.		
			Large offset	• Check the manual and use the tool in the allowable offset range.		
	Central cutting		No flatness of machined surface	Flatten the entry surface in pre-machining.Set the feed rate for lower than 0.05 mm/rev in rough surface area.		
	edge		High feed rate	• Lower the feed rate by 20 ~ 50% within standard conditions.		
			Using a chipping corner	Confirm the corner when exchanging inserts.		
		Peripheral corner area	Using inserts in excess of tool life	• Exchange the corner or the insert before the nose wear reaches 0.3 mm.		
	Peripheral cutting		No flatness of machined surface	Flatten the entry surface in pre-machining.Set the feed rate for lower than 0.05 mm/rev at rough surface area.		
acture	edge		The existence of interrupted area on the way of machining	• Set the feed rate for lower than 0.05 mm/rev in interrupted area.		
d fr			Using a chipping corner	Confirm the corner when exchanging inserts.		
Chipping and fractu		The unused	High hardness of workpiece	 Increase the cutting speed by 20% and lower the feed rate by 20% within standard conditions. Raise the fluid pressure (for higher than 1.5 MPa). 		
hip		corner area and	Chip packing	• Lower the feed rate by 20% within standard conditions.		
O		cutting edge	Machinery impact	Change to the continuous feed in case of pick feeding.		
			Using inserts in excess of tool-life	• Exchange the corner or the insert before the nose wear reaches 0.3 mm.		
	Common	Contact boundary	Vibration in drilling	Change to the machine with higher rigidity.Change to the clamp method with rigidity.Change the drill setting method.		
			High hardness of workpiece	• Set the feed rate for lower than 0.05 mm/rev.		
		Flaking	Thermally impact	Change from external to internal cutting fluid supply.Lower the feed rate by 20% within standard conditions.		
		0	Unsuitable for selection of grade	Change the grade to GH730.		
		Common	Looseness of screws	Tighten the screw.		

Drilling Tools

485

	Problem	Cause	Countermeasure				
		The misalignment for workpiece rotation	Set the misalignment to 0 ~ 0.2 mm.				
Scratch marks on the tool	The tool periphery	Offset machining in exceed of allowable range	Use the tool in the allowable offset range.				
		Offset direction reduced diameter of workpiece	Set offset direction extended diameter of workpiece				
		No flatness of the entry surface	Flatten the entry surface in pre-machining.				
ks		No hattless of the entry surface	• Set the feed rate for lower than 0.05 mm/rev in rough surface area.				
nar		Chipping of peripheral cutting edge	• Exchange the insert.				
chr		Bend of workpiece	Change to the clamp method with rigidity.				
crat		High hardness of workpiece	Increase the cutting speed by 20% and lower the feed rate by 20% within standard conditions				
Š		rightadress of workpiece	Raise the fluid pressure (for higher than 1.5 MPa).				
	Hole diameter	The misalignment for workpiece rotation					
		Inappropriate offset contents	Adjust offset contents.				
_		No flatness of the entry surface	Flatten the entry surface in pre-machining.				
rac			• Set the feed rate for lower than 0.05 mm/rev at rough surface area.				
ccu		Bend of workpiece	Change to the clamp method with rigidity.				
ea	Roughness		• The concentration of cutting fluid must be higher than 5 %.				
ho		Varieties and supplying of cutting fluid	 Use the cutting fluid superior in lubricity. 				
iate			Change to internal cutting fluid supply from external one.				
Inappropriate hole accuracy		Inappropriate cutting conditions	Increase the cutting speed by 20% within standard condition				
ppr			• Lower the feed rate by 20% within standard conditions.				
Ina	2	Failures of inserts	Exchange the insert.				
	Common	Chip packing	Increase the cutting speed by 20 % and lower the feed rate by 20% within standard conditions				
			Raise the fluid pressure. (for higher than 1.5 MPa)				
		Looseness of screws	Tighten the screw.				
		Inappropriate cutting conditions	Work within standard conditions. Increase the cutting speed by 10% within standard conditions				
			• Increase the cutting speed by 10% within standard conditions.				
		Failures of inserts	Increase the feed rate by 10% within standard conditions.				
	Prolonged and	Failules of Inserts	• Exchange inserts.				
	twisted chips	Machining by external fluid supply	Change to internal cutting fluid supply from external one.Work by step feed.				
-		Machining by external hald supply	 Insert the dwell for approximate 0.1 second before twisted of chips. 				
Chip control							
D D		Chips around the central cutting edge	There is a tendency to shorten the chips when shifted higher append and food				
Chi			speed and feed.				
	Chip packing	Fluid supply	Change to internal cutting fluid supply from external one.				
			Raise the fluid pressure. (for higher than 1.5 MPa)				
		Inappropriate cutting conditions	Increase the cutting speed by 20% and lower the feed rate by 20% within standard condition				
			Raise the fluid pressure. (for higher than 1.5 MPa)				
	Common	Large failure of drill holder	Exchange the drill holder.				
		Looseness of screws	Tighten the screw.				
	Chatter	Inappropriate cutting conditions	• Lower the cutting speed by 20% within standard conditions.				
			Increase the feed rate by 10% within standard conditions.				
		Large wear of inserts	• Exchange the insert.				
	Gliatter	Vibratian in duilling	Change to the machine with higher torque rigidity.				
		Vibration in drilling	Change to the clamp method with rigidity.Change the drill setting method.				
S		Looseness of screws					
Others		Cutting edge with chipping or breakage	Tighten the screw. Use the range of number of revolutions suited machine spec. Lower the feed rate by 20 ~ 50%				
0			 Exchange inserts before the failure becomes larger. 				
	Machine stop		 Exchange inserts before the failure becomes larger. Check that the fluid flows powerfully from the drill. 				
	and a star	Burned inserts	 Lower the cutting speed and the feed rate by 20% within 				
			standard conditions.				
		Failures of inserts	• Exchange the insert.				
	Large burr	Inappropriate cutting conditions	• Lower the feed rate by 20 ~ 50% just before leaving from the workpiece.				

Appendix

		Great	Britain	Sweden	U.S.A.	Geri	many	France	Italy	Spain	Japan
)	BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
		4360 40 C		1311	A570.36	1.0038	RSt.37-2	E 24-2 Ne			STKM 12A;C
		030A04	1A	1325	1115	1.0038	GS-CK16	-	-	-	-
		4360 40 B		1312	A573-81 65	1.0116	St.37-3	E 24-U	Fe37-3		
		080M15	-	1350	1015	1.0401	C15	CC12	C15C16	E.111	-
		050A20	2C/2D	1450	1020	1.0402	C22	CC20	C20C21	F.112	-
		230M07	-	1912	1213	1.0715	9SMn28	S250	CF9SMn28	11SMn28	SUM22
		-	-	1914	12L13	1.0718	9SMnPb28	S250Pb	CF9SMnPb28	11SMnPb28	SUM22L
		-	-	-	-	1.0722	10SPb20	10PbF2	CF10SPb20	10SPb20	-
		240M07	1B	-	1215	1.0736	9SMn36	S 300	CF9SMn36	12SMn35	-
		-	-	1926	12L14	1.0737	9SMnPb36	S300Pb	CF9SMnPb36	12SMnP35	-
		080M15	32C	1370	1015	1.1141	Ck15	XC12	C16	C15K	S15C
		-	-	-	1025	1.1158	Ck25	-	-	-	S25C
	•	4360 55 E		2145	A572-60	1.8900	StE 380		FeE390KG		
	Carbon steel	4360 55 E		2142	A572-60	-	17 MnV 6	NFA 35- 501 E 36			
	u S	060A35		1550	1025	1 0501	COF		-	- F.113	
	00	080M46	-	1550 1650	1035 1045	1.0501 1.0503	C35 C45	CC35 CC45	C35 C45	F.113 F.114	-
	arl	212M36	- 8M	1957	1140	1.0726	35S20	35MF4	645	F210G	-
	0	150M36	15	-	1039	1.1157	40Mn4	35M5	-	12100	-
		-	-	2120	1335	1.1167	36MN5	40M5	_	36Mn5	SMn438(H)
		150M28	14A	-	1330	1.1170	28Mn6	20M5	C28Mn	-	SCMn1
		060A35	-	1572	1035	1.1183	Cf35	XC38TS	C36	-	S35C
		080M46	-	1672	1045	1.1191	Ck45	XC42	C45	C45K	S45C
		060A52	-	1674	1050	1.1213	Cf53	XC48TS	C53	-	S50C
		070M55	-	1655	1055	1.0535	C55	-	C55	-	-
		080A62	43D	-	1060	1.0601	C60	CC55	C60	-	-
		070M55	-	-	1055	1.1203	Ck55	XC55	C50	C55K	S55C
		080A62	43D	1678	1060	1.1221	Ck60	XC60	C60	-	S58C
		060 A 96		1870	1095	1.1274	Ck 101	XC 100	-	F-5117	
		BW 1A		1880	W 1	1.1545	C 105 W1	Y105	C36KU	F-5118	SK 3
		BW2	-	2900	W210	1.1545	C105W1	Y120	C120KU	F.515	SUP4
Steel		4360 43C		1412	A573-81	1.0144	St.44-2	E 28-3	-	-	SM 400A;B;C
St	Low carbon steel	4360 50B		2132	-	1.0570	St.52-3	E36-3	Fe52BFN/Fe52CFN	-	SM490A;B;C;YA;YB
		150 M 19		2172	5120	1.0841	St.52-3	20 MC 5	Fe52	F-431	
		250A53	45	2085	9255	1.0904	55Si7	55S7	55Si8	56Si7	-
		-	-	-	9262	1.0961	60SiCr7	60SC7	60 SiCr8	60 SiCr8	-
		534A99	31	2258	52100	1.3505	100Cr6	100C6	100Cr6	F.131	SUJ2
		1501-240	-	2912	ASTM A204Gr.A	1.5415	15Mo3	15D3	16Mo3KW	16Mo3	-
		1503-245-420	-	-	4520	1.5423	16Mo5	-	16Mo5	16Mo5	-
		-	-	-	ASTM A350LF5	1.5622	14Ni6	16N6	14Ni6	15Ni6	-
		805M20	362	2506	8620	1.6523	21NiCrMo2	20NCD2	20NiCrMo2	20NiCrMo2	SNCM220(H)
		311-Type 7	-	-	8740	1.6546	40NiCrMo22		40NiCrMo2(KB)	40NiCrMo2	SNCM240
		820A16	-	-	-	1.6587	17CrNiMo6	18NCD6	-	14NiCrMo13	-
		523M15	-	- 2245	5015 5140	1.7015 1.7045	15Cr3 42Cr4	12C3	_	- 42Cr4	SCr415(H) SCr440
		- 527A60	- 48	-	5140	1.7045	42014 55Cr3	- 55C3	_	42014	SUP9(A)
		-	-	2216	-	1.7262	15CrMo5	12CD4	_	- 12CrMo4	SCM415(H)
	00	1501-620Gr27	-	-	ASTM A182	1.7335	13CrMo4 4	15CD3.5	14CrMo4 5	14CrMo45	-
	arl	1001 OLOGIEI			F11;F12	111000		15CD4.5			
		1501-622	-	2218	ASTM A182	1.7380	10CrMo910	12CD9, 10	12CrMo9, 10	TU.H	-
	Low	Gr.31;45	-		F.22			-	,	-	-
		1503-660-440	-	-	-	1.7715	14MoV6 3	-	-	13MoCrV6	-
		722 M 24		2240	-	1.8515	31 CeMo 12	30 CD12	30 CrMo12	F-1712	
		897M39	40C	-	-	1.8523	39CrMoV13 9	-	36CrMoV12	-	-
		524A14	-	2092	L1	1.7039	34MoCrS4 G	-	105WCR 5	-	-
		605A32	-	2108	8620	1.5419	20MoCrS4	-	-	F520.S	-
		823M30	33	2512	-	1.7228	55NiCrMoV6G	-	653M31	-	-
		-	-	2127	-	1.7139	16MnCr5	-	-	-	-
		830 M 31		2534	-	-	31NiCrMo134	-	-	F-1270	
		-		2550	L6	1.2721	50NiCr13	55NCV6	-	F-528	
		640A35	111A	-	3135	1.5710	36NiCr6	35NC6	-	-	SNC236
		-	-	-	3415	1.5732	14NiCr10	14NC11	16NiCr11	15NiCr11	SNC415(H)
		655M13; A12	36A	-	3415;3310	1.5752	14NiCr14	12NC15	-	-	SNC815(H)
		-	-	2090	9255	1.0904	55Si7	55S7	-	-	-

487

Great Britain		Sweden U.S.A.		Germany		France	Italy	Spain	Japan		
		BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
	_	816M40	110	-	9840	1.6511	36CrNiMo4	40NCD3	38NiCrMo4(KB)	35NiCrMo4	-
		817M40	24	2541	4340	1.6582	35CrNiMo6	35NCD6	35NiCrMo6(KB)	-	-
		530A32	18B	-	5132	1.7033	34Cr4	32C4	34Cr4(KB)	35Cr4	SCr430(H)
		530A40	18	-	5140	1.7035	41Cr4	42C4	41Cr4	42Cr4	SCr440(H)
		(527M20)	-	2511	5115	1.7131	16MnCr5	16MC5	16MnCr5	16MnCr5	-
	Low carbon steel	1717CDS110	-	2225	4130	1.7218	25CrMo4	25CD4	25CrMo4(KB)	55Cr3 AM26CrMo4	SCM420;SCM430
	L L	708A37	19B	2234	4137;4135	1.7220	34CrMo4	35CD4	35CrMo4	34CrMo4	SCM432;SCCRM3
	q	708M40	19A	2244	4140;4142	1.7223	41CrMo4	42CD4TS	41CrMo4	42CrMo4	SCM 440
	gr	708M40	19A	2244	4140	1.7225	42CrMo4	42CD4	42CrMo4	42CrMo4	SCM440(H)
	2	722M24	40B	2240	-	1.7361	32CrMo12	30CD12	32CrMo12	F.124.A	-
	0	735A50	47	2230	6150	1.8159	50CrV4	50CV4	50CrV4	51CrV4	SUP10
		905M39	41B	2940	-	1.8509	41CrAlMo7	40CAD6, 12	41CrAlMo7	41CrAIMo7	-
		BL3	-	_	L3	1.2067	100Cr6	Y100C6	-	100Cr6	-
			-	2140	-	1.2419	105WCr6	105WC13	10WCr6	105WCr5	SKS31
									107WCr5KU		SKS2,SKS3
		-	-	-	L6	1.2713	55NiCrMoV6	55NCDV7	-	F.520.S	SKT4
		1501-509;510	-	-	ASTM A353	1.5662	X8Ni9	-	X10Ni9	XBNi09	-
		-	-	-	2515	1.5680	12NI19	Z18N5	-	-	-
0		832M13	36C	-	-	1.6657	14NiCrMo134	-	15NiCrMo13	14NiCrMo131	-
Steel		BD3	-	-	D3	1.2080	X210Cr12	Z200C12	X210Cr13KU X250Cr12KU	X210Cr12	SKD1
	-			2314		1.2083					
		BH13	-	2242	H13	1.2344	X40CrMoV5 1	Z40CDV5	X35CrMoV05KU	X40CrMoV5	SKD61
									X40CrMoV511KU		
	tee	BA2	-	2260	A2	1.2363	X100CrMoV5 1	Z100CDV5	X100CrMoV51KU	X100CrMoV5	SKD12
	st	-	-	2312	-	1.2436	X210CrW12	-	X215CrW12 1KU	X210CrW12	SKD2
	Alloy steel	BS1	-	2710	S1	1.2542	45WCrV7	-	45WCrV8KU	45WCrSi8	-
	All	BH21	-	-	H21	1.2581	X30WCrV9 3 X30WCrV9 3KU	Z30WCV9	X28W09KU X30WCrV9 3KU	X30WCrV9	SKD5
		-	-	2310	-	1.2601	X165CrMoV 12	-	X165CrMoW12KU	X160CrMoV12	-
		401S45	52	-	HW3	1.4718	X45GrSi93	Z45CS9	X45GrSi8	F322	SUH1
		4959BA2	-	2715	D3	1.3343	S6-5-2	Z40CSD10	15NiCrMo13	-	SUH3
		BM 2		2722	M 2	1.3343	S6/5/2	Z 85 WDCV	HS 6-5-2-2	F-5603.	SKH 51
		BM 35		2723	M 35	1.3243	S6/5/2/5	6-5-2-5	HS 6-5-2-5	F-5613	SKH 55
		-		2782	M 7	1.3348	S2/9/2	-	HS 2-9-2	F-5607	-
		-	-	2736	HNV3	1.2379	X210Cr12 G	-	-	-	-
	li di	-	-	2223	-	-	-	-			
	Steel astin	Z120M12	-	-	-	1.3401	G-X120Mn12	Z120M12	XG120Mn12	X120Mn12	SCMnH/1
	Steel Casting	BW 10		2183		1.3401		2120 M12	GX120 Mn12	F-8251	SEMn H1

488 **Technical Data**

		Great	Britain	Sweden	U.S.A.	Ger	many	France	Italy	Spain	Japan
	И	BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
		403S17	-	2301	403	1.4000	X7Cr13	Z6C13	X6Cr13	F.3110	SUS403
						1.4001	X7Cr14	-	-	F.8401	-
		416 S 21		2380	416	1.4005	X12CrS13	Z11CF13	X12 CrS 13	F-3411	SUS 416
		430S15	960	2320	430	1.4016	X8Cr17	Z8C17	X8Cr17	F3113	SUS430
		410S21	56A	2302	410	1.4006	X10Cr13	Z10C14	X12Cr13	F.3401	SUS410
		430S17	60	2320	430	-	X8Cr17	Z8C17	X8Cr17	F.3113	SUS430
		420S45	56D	2304	-	1.4034	X46Cr13	Z40CM	X40Cr14	F.3405	SUS420J2
	<u>.</u>							Z38C13M			
	Ferritic - Martensitic	405S17	-	-	405	1.4002	-	Z8CA12	X6CrAl13	-	-
	en	420S37	-	2303	420	1.4021	-	Z20C13	X20Cr13	-	-
	art	431S29	57	2321	431	1.4057	X22CrNi17	Z15CNi6.02	X16CrNi16	F.3427	SUS431
	Š	-	-	2383	430F	1.4104	X12CrMoS17	Z10CF17	X10CrS17	F.3117	SUS430F
	1	434S17	-	2325	434	1.4113	X6CrMo17	Z8CD17.01	X8CrMo17	-	SUS434
	tic	425C11	-	2385	CA6-NM	1.4313	X5CrNi13 4	Z4CND13.4M	(G)X6CrNi304	-	SCS5
	iri	403S17	-	-	405	1.4724	X10CrA113	Z10C13	X10CrA112	F.311	SUS405
	L L	430S15	60	-	430	1.4742	X10CrA118	Z10CAS18	X8Cr17	F.3113	SUS430
		443S65	59	-	HNV6	1.4747	X80CrNiSi20	Z80CSN20.02	X80CrSiNi20	F.320B	SUH4
		-	-	2322	446	1.4762	X10CrA124	Z10CAS24	X16Cr26	-	SUH446
		349S54	-		EV8	1.4871	X53CrMnNiN21 9	Z52CMN21.09	X53CrMnNiN21 9	-	SUH35, SUH36
		010001		2326	S44400	1.4521	X1CrMoTi18 2		-	-	-
		-		2317	-	1.4922	X20CrMoV12-1		X20CrMoNi 12 01	-	_
		_	_	-	630	1.4542/	-	Z7CNU17-04	-		_
			-	_	030	1.4548	_	2701017-04	_		_
		304S11	-	2352	304L	1.4348	-	Z2CN18-10	X2CrNi18 11	-	
		304S11 304S31	- 58E	2332/2333	304L 304	1.4300	- X5CrNi189	Z6CN18-10 Z6CN18.09	X5CrNi18 10	- F.3551	- SUS304
		304331	JOE	2332/2333	304	1.4550	A3CINI109	200110.09	ASCINITO TU		303304
										F.3541	
_		000001	5014	0040	000	4 4005	VIOO NIOIO O	7400015 40.00	V400 N/0 40 00	F.3504	0110000
O		303S21	58M	2346	303	1.4305		Z10CNF 18.09		F.3508	SUS303
ite		304S15	58E	2332	304	1.4301	X5CrNi189	Z6CN18.09	X5CrNi18 10	F.3551	SUS304
()		304C12		2333				Z3CN19.10	-	-	SUS304L
Stainless steel		304S12	-	2352	304L	1.4306	X2CrNi18 9	Z2CrNi18 10	X2CrNi18 11	F.3503	SCS19
		-	-	2331	301	1.4310	X12CrNi17 7	Z12CN17.07	X12CrNi17 07	F.3517	SUS301
		304S62	-	2371	304LN	1.4311	X2CrNiN18 10		-	-	SUS304LN
ita		316S16	58J	2347	316	1.4401	X5CrNiMo18 10		X5CrNiMo17 12	F.3543	SUS316
S		-	-	2375	316LN	1.4429	X2CrNiMoN18 13		-	-	SUS316LN
		316S13		2348	316L	1.4404	-	Z2CND17-12	X2CrNiMo1712	-	-
		316S13	-	2353	316L	1.4435	X2CrNiMo18 12	Z2CND17.12	X2CrNiMo1712	-	SCS16
	<u>.</u>							-	-	-	SUS316L
	Austenitic	316S33	-	2343	316	1.4436	-	Z6CND18.12-03	X8CrNiMo1713	-	-
	te			2347							
	sn	317S12	-	2367	317L	1.4438	X2CrNiMo18 16	Z2CND19.15	X2CrNiMo18 16	-	SUS317L
	⋖	-		2562	UNS	1.4539	X1NiCrMo	Z2 NCDU25-20	-	-	-
					V 0890A						
		321S12	58B	2337	321	1.4541	X10CrNiTi18 9	Z6CNT18.10	X6CrNiTi18 11	F.3553	SUS321
										F.3523	
		347S17	58F	2338	347	1.4550	X10CrNiNb18 9	Z6CNNb18.10	X6CrNiNb18 11	F.3552	SUS347
										F.3524	
		320S17	58J	2350	316Ti	1.4571	X10CrNiMoTi18 10	Z6NDT17.12	X6CrNiMoTi17 12	F.3535	-
		-	-	-	318	1.4583	X10CrNiMoNb18 12	Z6CNDNb17 13B	X6CrNiMoNb17 13	-	-
		309S24	-	-	309	1.4828	X15CrNiSi20 12	Z15CNS20.12	-	-	SUH309
		310S24	-	2361	310S	1.4845	X12CrNi25 21		X6CrNi25 20	F.331	SUH310
		301S21	58C	2370	308	1.4406	X10CrNi18.08	Z1NCDU25.20	-	F.8414	SCS17
		-		2387	-	1.4418	X4 CrNiMo16 5				
		316S111	-	-	17-7PH	1.4568/	-	Z8CNA17-07	X2CrNiMo1712	-	-
						1.4504					
		-	-	2584	NO8028	1.4563	-	Z1NCDU31-27-03	-	-	-
		-	-	2378	S31254	-	-	Z1NCDU20-18-06AZ	-	-	-
	1	-	-	2376	S31500	1.4417	X2CrNiMoSi19 5		-	-	-
	x c ti	_	-	2324	S32900	-	X8CrNiMo27 5		_	-	-
	riti	_	-	2324	S32304	_	X2CrNiN23 4	Z2CN23-04AZ	_	-	-
	Austenitic- Ferritic (Duplex)	_	-	2328	-	-	-	-	_	-	-
	ЭщG	_	-	2377	S31803	-	X2CrNiMoN22 53	Z2CND22-05-03	_	-	-
			1	2011	001000		I VEOLUNIATO NEC JO	LEONDEL-00-00			1

489

k	~	Great	Britain	Sweden	U.S.A.	Gerr	many	France	Italy	Spain	Japan
		BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
Cast iron	Ductile cast iron Grey cast iron Malleable cast iron	8 290/6 B 340/12 P 440/7 P 510/4 P 570/3 P570/3 P690/2 Grade 150 Grade 220 Grade 220 Grade 220 Grade 260 Grade 300 Grade 350 Grade 350 Grade 400 L-NiCUCr202 SNG 420/12 SNG 370:17 - SNG 500/7 Grade S6 SNG 600/3 SNG 700/2		0814 0815 0852 0854 0858 0856 0862 0100 0115 0120 0125 0130 0135 0140 0523 0717-02 0717-12 0717-15 0727-02 0776 0732-03 0737-01	32510 40010 50005 70003 A220-70003 A220-80002 No 20 B No 25 B No 25 B No 30 B No 35 B No 40 B No 45 B No 50 B No 55 B A436 Type 2 60-40-18 - - 80-55-06 A43D2 - 100-70-03	0.8145 0.8155 0.8165 0.8170 0.6015 0.6020 0.6025 0.6030 0.6035 0.6040 0.6040 0.7040 0.7040 0.7050 0.7660 0.7070	- GTS-35 GTS-45 GTS-65 GTS-65-02 GTS-70-02 GG10 GG 15 GG 20 GG 25 GG 30 GG 25 GG 30 GG 35 GG 40 GGL-NiCr202 GGG 40 GGG 40.3 GGG 40.3 GGG 50 GGG-NiCr202 GGG 60 GGG 70	MN 32-8 MN 35-10 Mn 450 MP 50-5 MP 60-3 Mn 650-3 Mn 700-2 Ft 10 D Ft 15 D Ft 20 D Ft 20 D Ft 25 D Ft 30 D Ft 35 D Ft 40 D L-NC 202 FGS 400-12 FGS 500-7 S-NC 202 FGS 600-3 FGS 700-2	GMN 45 GMN 55 GMN 65 GMN 70 G 15 G 20 G 25 G 30 G 35 _ GS 370-17 GS 500 - GS 500 -	FG 15 FG 25 FG 30 FG 35 _ FGE 38-17 FGE 50-7 _ FGE 50-7 _ FGS 70-2	FCMB310 FCMW330 FCMW370 FCMP490 FCMP540 FCMP690 FCMP690 FC150 FC250 FC250 FC250 FC350 FC350 FC350 FCD400 FCD500 FCD500 FCD600 FCD700

Ν	Great	Britain	Sweden	U.S.A.	Gerr	many	France	Italy	Spain	Japan
	BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
	-	-	4251	SC64D	3.2373	G-AISI9MGWA	A-S7G	-	-	C4BS
sn	LM5	-	4252	GD-AISI12	-	G-ALMG5	A-SU12	-	-	AC4A
<u>ହ ୬</u>	LM25		4244	356.1						A5052
-ferro etals			4247	A413.0		GD-AlSi12				A6061
je -fe	LM24		4250	A380.1		GD-AlSi8Cu3				A7075
- É	LM20		4260	A413.1		G-AlSi12 (Cu)				ADC12
ž	LM6		4261	A413.2		G-AlSi12				
	LM9		4253	A360.2		G-AlSi10Mg(Cu)				

490 Technical Data

	S	Great	Britain	Sweden	U.S.A.	Geri	many	France	Italy	Spain	Japan
	2	BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
		-	-	-	330	1.4864	X12NiCrSi36 16	Z12NCS35.16	F-3313	-	SUH330
		330C11	-	-	-	1.4865	G-X40NiCrSi38 18	-	XG50NiCr39 19	-	SCH15
		-	-	-	5390A	2.4603	-	NC22FeD	-	-	
als		-	-	-	5666	2.4856	NiCr22Mo9Nb	NC22FeDNB	-	-	
ia l	alloys	HR5,203-4	-	-	-	2.4630	NiCr2OTi	NC20T	-	-	
materi	l lo	-	-	-	5660	LW2.4662	NiFe35Cr14MoTi	ZSNCDT42	-	-	
at		3146-3	-	-	5391	LW2 4670	S-NiCr13A16MoNb	NC12AD	-	-	
	bed	HR8	-	-	5383	LW2.4668	NiCr19Fe19NbMo	NC19eNB	-	-	
cut	Ni-base	3072-76	-	-	4676	2.4375	NiCu30Al	-	-	-	
Ū Ū	<u>-</u>	Hr401,601	-	-	-	2.4631	NiCr2OTiAk	NC20TA	-	-	
6	Z	-	-	-	AMS 5399	2.4973	NiCr19Co11MoTi	NC19KDT	-	-	
11		-	-	-	AMS 5544	LW2.4668	NiCr19Fe19NbMo	NC20K14	-	-	
Difficult-to		-	-	-	AMS 5397	LW2 4674	NiCo15Cr10MoAlTi	-	-	-	
		-	-	-	5537C	LW2.4964	CoCr20W15Ni	KC20WN	-	-	
i i i		-	-	-	AMS 5772	-	CoCr22W14Ni	KC22WN	-	-	
	Ε.,,	TA14/17	-	-	AMS R54520	-	TiAl5Sn2.5	T-A5E	-	-	
) iu	TA10-13/TA28	-	-	AMS R56400	-	TiAl6V4	T-A6V	-	-	
	Titanium alloys	TA11	-	-	AMS R56401	-	TiAl6V4ELI	-	-	-	
	F	-	-	-	-	-	TiAl4Mo4Sn4Si0.5	-	-	-	

н	Great	Britain	Sweden	U.S.A.	Geri	nany	France	Italy	Spain	Japan
	BS	EN	SS	AISI/SAE	W. No.	DIN	AFNOR	UNI	UNE	JIS
Hard	-	-	2258-08	440A	1.4108	X100CrMo13	-	-	-	C4BS
	-	-	2534-05	610	1.4111	X110CrMoV15	-	-	-	AC4A
materials	-	-	2541-06	0-2	-	X65CrMo14	-	-	-	AC4A

Approximate Conversion Table of Hardness

Brinell,		Rock	well		Brinell,		Rock	well	
10 mm ball, Load 3000 kg,	Vickers	B Scale, Load 100 kg, Diameter	C Scale, Load 150 kg, brale	Shore	10 mm ball, Load 3000 kg,	Vickers	B Scale, Load 100 kg, Diameter	C Scale, Load 150 kg, brale	Shore
Standard ball HB	HV	1/16 in. Steel ball HRB	diamond	HS	Standard ball HB	HV	1/16 in. Steel ball HRB	diamond	HS
-	940	-	68.0	97	429	455	-	45.7	61
-	920 900	-	67.5 67.0	96 95	415 401	440 425	-	44.5 43.1	59 58
(767)	880	_	66.4	93	388	410	-	41.8	56
(757)	860	-	65.9	92	375	396	-	40.4	54
(745)	840	-	65.3	91	363	383	-	39.1	52
(733)	820	-	64.7	90	352	372	110.0	37.9	51
(722)	800	-	64.0	88	341	360	109.0	36.6	50
(712) (710)	- 780	-	- 63.3	- 87	331 321	350 339	108.5 108.0	35.5 34.3	48 47
(698)	760	_	62.5	86	021	000	100.0	04.0	- '
					311	328	107.5	33.1	46
(684)	740	-	61.8	-	302	319	107.0	32.1	45
(682) (670)	737 720	-	61.7 61.0	84 83	293 285	309 301	106.0 105.5	30.9 29.9	43
(656)	700	_	60.1	-	203	292	103.5	28.8	41
(653)	697	-	60.0	81					
(0.47)	600		50.7		269	284	104.0	27.6	40
(647) (638)	690 680	-	59.7 59.2	- 80	262 255	276 269	103.0 102.0	26.6 25.4	39 38
(000)	677	_	59.1	-	248	261	102.0	24.2	37
(630)	670	-	58.8	-	241	253	100.0	22.8	36
(627)	667	-	58.7	79	005	0.47	00.0	01 7	05
(601)	640	_	57.3	77	235 229	247 241	99.0 98.2	21.7 20.5	35 34
	010		07.0		223	234	97.3	18.8	-
-	640	-	57.3	-	217	228	96.4	17.5	33
(578)	615	-	56.0	75	212	222	95.5	16.0	-
-	607	-	55.6	-	207	218	94.6	15.2	32
(555)	591	-	54.7	73	201	212	93.8	13.8	31
	579		54.0		197	207	92.8	12.7	30
(534)	569	-	54.0 53.5	- 71	192 187	202 196	91.9 90.7	11.5 10.0	29
-	553	-	52.5	-					
(514)	547	-	52.1	70	183	192	90.0	9.0	28
495	539	_	51.6	_	179 174	188 182	89.0 87.8	8.0 6.4	27
-	530	-	51.1	-	170	178	86.8	5.4	26
-	528	-	51.0	68	167	175	86.0	4.4	-
477	516	-	50.3	-	163	171	85.0	3.3	25
-	508	-	49.6	-	156	163	82.9	0.9	-
-	508	-	49.6	66	149	156	80.8	-	23
461	495	_	48.8	_	143 137	150 143	78.7 76.4	-	22 21
-	491	-	48.5	-		1 10	70.7		<u>-</u> '
-	491	-	48.5	65	131	137	74.0	-	-
1.4.4	A 7 A		47.0		126	132	72.0	-	20
444	474 472		47.2 47.1	-	121 116	127 122	69.8 67.6	-	19 18
-	472	-	47.1	63	111	117	65.7	-	15
Note: Figures in		nell indicate valu			· · · · ·				-

Note: Figures in () under Brinell indicate values using tungsten carbide ball.

■ Surface roughness

According to JIS B 0601, 1994 and its explanation

Туре	Symbol	How to determine	Example (Fig.)
Arithmetic mean roughness	Ra	Extract the reference length in the direction of mean line from the roughness curve. Take the X axis in the vertical magnification direction. Express the roughness curve by $Y = f(x)$. In this case, the value determined by the following equation is expressed in micrometer (µm) and called the arithmetic mean roughness. Ra= $\frac{1}{l} \int_{0}^{1} f(x) dx$	
Maximum height	Ry	Extract the reference length in the direction of mean line from the roughness curve. Measure the distance between crest and bottom lines of the extracted portion in the direction of the vertical magnification direction of the roughness curve. Express this value in micrometer (μ m) and call it the maximum height. Ry=Rp+Rv	
Ten point mean roughness	Rz	Extract the reference length in the direction of mean line from the roughness curve. Determine the sum of the average of the absolute value of the height (Yp) of the fifth crest from the average line and the average of the absolute value of the height (Yv) of the fifth bottom from the lowest bottom. Express this value in micrometer (μ m) and call it the ten-point mean roughness. Rz= $\frac{Mp1 + Yp2 + Yp3 + Yp4 + Yp5 + Mv1 + Yv2 + Yv3 + Yv4 + Yv5 }{5}$	Y _{p1} ,Y _{p2} , Y _{p3} , Y _{p4} , Y _{p5} : Height of the fifth crest from the highest crest of the sampled portion equivalent to the reference length. Y _{v1} ,Y _{v2} , Y _{v3} , Y _{v4} , Y _{v5} : Height of the fifth bottom from the lowest crest of the sampled portion equivalent to the reference length.

Grade Comparison Charts

•CVD Coated Grades

Application	code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
	P01	T9005	UE6005	AC700G	GC4005	CA5505	HC5000	JC110V		TP1000 TK1000		IC9015
	P10	T9005 T9015	UE6005 UE6010 UC6010 UE6020	AC700G AC2000	GC4005 GC4015 GC3115	CA5505 CA5515	GM10 GM8015 HG8010	JC110V JC215V JC730U	CP2 CP5	TP1000 TP2000 TK1000	KC9110 TN7005 TN7010 TN2510 TN25M	IC9015
P	P20	T9015 T9025	UE6010 UC6010 UE6020 F7030	AC2000 AC3000	GC4015 GC4020 GC2015 GC4225	CA5515 CA5525 CA9025	GM8020 HG8025	JC110V JC215V JC730U	CP2 CP5	TP2000 TP200 T200M T250M TK2000	KC9125 CM4 TN7015 TN7525	IC9015 IC9025
	P30	T9025 T9035 T3030	UH6400 UE6035 F7030 US735	AC3000 AC630M AC230	GC4030 GC4035 GC2025 GC2135 GC4225	CA5525 CA5535 CR9025	GM25	JC215V JC325V		TP2000 TP3000 T250M T350M T25M	KC8050 KC930M TN8025 TN7535 TN7025	IC9025
	P40	T9035	UH6400 UE6035 US735	AC630M AC230	GC4035 GC4240 GC235	CA5535	GM8035 GX30 GF30 GX2030	JC325V JC450V		TP3000 TP400 TP40 T350M	KC7935 KC9040 TPC35	
	M10	T9015	US7020	AC610M	GC2015	CA6015	GM10	JC110V	CP2 CP5	TP200	TN25M TN7010	
	M20	T6020 T9025	US7020 F7030	AC610M AC630M	GC2025	CA6015	GM8020	JC110V JC215V JC730U	CP2 CP5	TP200 TP3000 T250M T25M	KC9225 KC925M TN7015 TN7025	IC9025
Stainless steel	M30	T6030 T3030	US735 F7030	AC630M	GC2040 GC2135 GC235		GM25 HG8025	JC215V JC325V		TP3000 TP400 TP40 T350M T25M	KC8050 KC9040 KC930M TN7025 TN8025 TN8025 TN7535	IC9025 IC9054
	M40						GX30 GF30	JC325V JC450V		TP400 TP40	KC9240 KC9245 TPC35	IC9025
	K01	T5105 T5010	UC5105	AC300G	GC3205 GC3210	CA4010	GM3005	JC105V JC600		TK1000		IC9007 IC428
K	K10	T5105 T5115 T5010 T5020 T1015	UC5115 F5010	AC700G AC211	GC3205 GC3210 GC3115	CA4010 CA4115	GM8015 HG8010	JC110V JC600 JC610	CP2 CP5	TK1000 TK2000	KC9315 TN5015 TN5505 TN2510 KC915M TN5515 TN7010	IC9015
Cast irons	K20	T5125 T5020 T5115	F5020 UC5115	AC700G	GC3215 GC3220 K20W K20D	CA4010 CA4120	GM8020 HG8025	JC110V JC215V JC610	CP2 CP5	TP200 T200M TK2000 T150M	KC9325 KC925M TN7015 TN5020 TN5520	IC9015
	K30	T5125			GC3040		GM25	JC215V JC610		TP200 T200M	KC8050 KC9040 KC930M TN7025	

●PVD Coated Grades

Application	code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
	P01					PR915	PTH08M PCA08M PCS08M TB6005	JC5003				
	P10	AH710	VP10MF	ACZ310	GC1025 GC1030 P10A	PR630 PR730 PR830 PR930	CY9020 PCA12M PCA15M PC20M JX1020	JC5003 JC5030		CP200	KC5010 KC792M KC715M KC637M	IC570 IC950
P	P20	AH710	VP20MF VP15TF VP20RT	ACZ310 ACZ330	GC1020 GC4125 GC1025 P20A GC1030	PR630 PR730 PR830 PR930	TB6020 CY150 CY15	JC5015 JC5030 JC5040	VM1 QM1 TA1 TAS	CP250 F25M	KC7215 KC7315 KC522M KC625M KC635M KC525M	IC570 IC908 IC950
	P30	GH330 GH730 AH120 AH330 AH740	VP15TF VP30RT VP20RT	ACZ330 ACZ350		PR660	TB6045 CY250 CY25 HC844	JC5015 JC5040	ZM3 QM3 TA3	CP500 F25M F30M	KC7015 KC7020 KC7235 KC725M	IC908 IC1008 IC328 IC3028 IC354 IC950
	P40	AH120 AH140	VP30RT	ACZ350	GC2145		PTH30E TB6060 PTH40H	JC5040	ZM3 QM3 TA3	CP500 F40M T60M	KC7030 KC7040 KC7140 KC735M	IC3028 IC328 IC354
	M01			EH510Z			PCS08H					
	M10	AH710	VP10MF	EH510Z	GC1005 GC1105	PR630 PR730 PR915 PR925	CY9020	JC5003		CP200	KC5010 KC6005 KC6105 KC792M KC715M	IC907 IC507
Stainless steel	M20	GH330 GH730	VP20MF VP15TF VP20RT	EH520Z ACZ310	GC1025 GC4125 GC1030	PR630 PR730 PR915 PR925	TB6020 CY150 CY15	JC5015 JC8015	VM1 QM1 TA1 TAS	CP200 CP500 F25M	KC7020 KC7025 KC522M KC633M KC525M	IC907 IC507 IC328/3028 IC908 IC1008 IC1028
	M30	AH120	VP15TF VP20RT VP30RT	ACZ330 ACZ350	GC1020 GC2030 GC2035	PR660	TB6045 CY250 CY25 HC844	JC5015 JC8015	ZM3 QM3 TA3	CP500 F30M F40M	KC5025 KC7030 KC720 KC7225 KC725M KC735M	IC507 IC328/3028 IC908 IC1008 IC1028 IC928
	M40	AH140	VP30RT	ACZ350	GC2145		PTH30E TB6060 PTH40H		ZM3 QM3 TA3			IC328/3028 IC1028 IC928
	K01	AH110		EH10Z EH510Z		PR510	PTH08M PCA08M TB6005 PTH05A	JC5003				
К	K10	GH110 AH110		EH10Z EH510Z		PR510 PR905	CY9020 PTH13S	JC5015 JC5003		CP200	KC5010 KC7210 TN2505 KC510M	IC507 IC910
Cast irons	K20	AH120	VP15TF VP20RT	EH20Z ACZ310 EH520Z	GC1020	PR905	TB6020 CY150 CY15	JC5015	QM1 TA1	CP200 CP250	KC7015 KC7215 KC7315 KC520M KC522M KC525M	IC507 IC328 IC908 IC910
	K30		VP15TF VP20RT	ACZ310			TB6045 CY250 PTH40H		QM3 TA3	CP500	KC7225 KC725M	IC328 IC908

Application	code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
	N01	GH110		ACZ305 DL1000			PCS08M					
Nonferrous metals	N10			EH10Z EH510Z			CY100H CY10H				KC5410 KC510M KC637M	
	N20			EH20Z EH520Z						F15M F17M	KC631M	IC308 IC908 IC328
	S01	AH110	VP05RT					JC5003	TAS			
	S10	AH120	VP05RT VP10RT	EH510Z	GC1005 GC1105	PR915	PCS08M	JC5015 JC8015	QM1 TA1 TAS	CP200 CP250 CP500	KC5410 KC6005 KC7030 KC510M KC5510	IC507 IC907
Super alloys	S20		VP10RT VP15TF	EH520Z EH20Z	GC4125 GC1025 GC1030		CY100H CY10H		QM1 TA1 ZM3 TA3 TAS	CP250 CP500	KC7020 KC730 KC522M KC625M KC5525 KC525M	IC507 IC907 IC328 IC908 IC1008 IC1028
	S30		VP15TF		GC2030					F40M	KC720 KC725M	IC328/3028 IC1028 IC928
	H01	AH710						JC5003				
Hard materials	H10	AH110 AH120	VP15TF	EZ510Z			PTH08M PCA08M TB6005 PTH80D	JC5015 JC8008 JC8015		F15M	KC6312 TN2505	
	H20		VP15TF							CP200 F15M	KC635M	
	H30									F30M		

●PVD Coated Grades

Cermet/Coated Cermet Grades

Application	code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
	P01	GT720 NS520 GT520	AP25N	T110A T2000Z		TN30 PV30		LN10 CX50	T3N T15			IC20N IC520N
	P10	GT720 GT730 NS520 AT530	NX2525 AP25N	T1200A T2000Z	CT5015 GC1525	TN60 TN6020 PV60 PV7020	CZ25	CX50 CX75	T15 C7X	CM C15M CMP	KT315 KT6215 TTI25	IC20N IC520N IC530N IC75T
P Steels	P20	NS730 GT730 NS530 AT530 GT530	NX2525 NX3035 AP25N UP35N	T1200A T2000Z T3000Z	CT530 GC1525	TN90 TN100M TN6020 PV90 PV7020	MZ1000 CH550 MZ2000 CH7030	CX75 CX90	C7X	C15M	KT325 KT530M HT7 KT605M	IC20N IC520N IC530N IC75T IC30N
	P30	NS730 NS740 NS530 NS540	NX4545 VP45N	T3000Z T250A			MZ3000 CH7035	CX90 CX99	N40			IC30N IC75T

Applica	ation code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
	M01											
	M10	GT730 NS520 AT530 GT530	NX2525 AP25N	T110A T2000Z	GC1525	TN60 TN6020 PV60 PV7020		LN10 CX50	T15 C7X	CM CMP	TTI25	IC30N
Stainless	M20	NS730 NS530	NX2525 NX3035 AP25N	T1200A T2000Z	CT530	TN90 TN100M TN6020 PV90 PV7020	MZ1000 CH550 MZ2000 CM7030	CX50 CX75	C45 C7X	C15M	KT530M HT7 KT605M	IC30N
	M30	NS740 NS540	NX4545	T3000Z T250A			MZ3000 CM7035	CX90 CX99	N40			
	K01	GT720 NS520 AT520 GT520	NX2525 AP25N	T110A T2000Z		TN30 PV30		LN10	T3N T15			
Cast irons	K10	GT730 NS730 NS530 GT530	NX2525 AP25N	T1200A T2000Z		TN60 TN6020 PV60 PV7020		LN10	T15 C7X		KT325 KT6215 TTI25	
	K20		NX2525 AP25N	T3000Z				CX75			KT530M HT7	

Cermet/Coated Cerment Grades

•Ceramics Grades

Application	n code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Seco Tool	Kennametal	Iscar
P	P01	LX11 LX21		NB90S NB100C		A66N		HC1 HC4 HC7 ZC7				
	P10			WX120				WA1	Whiskal			
	P20											
M	M01											
Stainless steel	M10			WX120				WA1	Whiskal		KY1540	
	M20											
	K01	LX11 LX21		NB90S NB90M	CC620 CC650	KA30		HC1 HW2 HC2 HC6 HC7	NPC-H2 NPC-A2 Win		KY1615 KY1310	
Cast irons	K10	CXC73		NS260C NS260 WX120	CC6090 CC1690	A65 A66N KS500		WA1 SX1 SP2 SX9	NX NXA Whiskal		KY3500 KY4300	
	K20	FX105 CX710		NS260C NS260		KS500 KS6000		SX8 SP2 SX1	NX NXA			
C	S01								NPC-H2 NPC-A2			
Super alloys	S10			WX120	CC670 CC6080			WA1	Whiskal Win		KY4300 KY1540	
	S20											
Hard materials	H01	LX11		NB100C	GC6050 CC650 CC670	A65 A66N		HC4 HC7 ZC7	NPC-A2			
Hard materials	H10					A65 A66N		WA1	NPC-A2 Win		KY4300 KY1615	
	H20											

Ap	plication c	ode	Tungaloy	Mitsubishi Material	Sumitomo Electric Hartmetall	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Nippon	Seco Tool	Kennametal	Iscar
		K01	BX930	Material MB710	BN500	CB50 CB7050	KBN900 KBN65B		JBN795	B20 B22 B16	NBN10 NBN20 NBN30		KD120 PB100	IB85 IB90A
	K Cast irons	K10	BX470 BX480 BX950	MB710 MB730	BN700		KBN900	BH200	JBN330	B20 B22 B16	NBN10 NBN20 NBN30	CBN200 CBN300 CBN300P	KB9610	IB90 IB90A
		K20	BX950 BX90S BXC90	MB730 MBS140	BN700 BNS800			BH250				CBN200 CBN300 CBN300P		
		K30	BXC90 BX90S	MBS140	BNS800							CBN350	KB9640	
		S01	BX950 BX450 BX480	MB730	BN700									IB85
	Super alloys	S10											KD120 PB100	
_		S20												
PCBN		S30												
д		H01	BXC30 BX310	MBC010 MB810	BNX10 BNC150 BNC80		KBN510 KBN10B KBN10N KBN25N			B20 B24	NBN10	CBN10 CBN100 CBN100P CBN050	PB250	
	Hard materials	H10	BXC50 BXC30 BX330	MB820 MB8025 MBC020	BNC150 BNC200 BN250	CB7015 CB7020 CB20	KBN25N KBN900 KBN525	BH200	JBN300	B20 B24	NBN10	CBN100 CBN100P CBN300 CBN300P CBN200	KD050 KD120 KB9610	IB50
	materials	H20	BXC50 BX360	MB825 MB8025 MBC020	BNC200 BNX20	CB50 CB7050		BH250	JBN245	B26		CBN150 CBN300 CBN300P CBN350 CBN200	KB5625	IB55
		H30	BXC50 BX380	MB8025 MB835 MBC020	BNC300 BN350 BNX25					B36		CBN350	KB9640	IB85
		N01	DX180 DX160	MD205	DA90	CD10	KPD001		JDA30 JDA735	PD1	NPD		PD100 KD1405	
PCD	Nonferrous metals	N10	DX140	MD205 MD220	DA150 DA2200		KPD001 KPD010		JDA40 JDA745			PCD10	KD100 KD1410 KD1415	ID5
	metals	N20	DX120	MD220 MD230	DA2200				JDA10 JDA715			PCD20		
		N30	DX120	MD230	DA2200							PCD30		

• PCBN + PCD

•Ultra-fine Grain Cemented Carbide Grades

Applicati	on code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hartmetall	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Nippon	Seco Tool	Kennametal	Iscar
	P01									SN03			
	P10	TX10S		ST10P	S1P		WS10	SRT		SN10		P10	IC70
Р	P20	TX20 TX25	UTi20T	ST20E	SMA		EX35	SRT DX30		SN20 FL37S		K125M TTM	IC70 IC50M
Steels	P30	TX30 UX30	UTi20T	A30 A30N	SM30	PW30	EX35 EX40	SR30 DX35		SN30		GK K600 TTR	IC50M IC54
	P40	TX40		ST40E	S6		EX45	SR30 DX35		SN40		G13	IC54

Technical Data

Applicatio	on code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hartmetall	Sandvik	Kyocera	Hitachi Tool	Dijet	NTK	Nippon	Seco Tool	Kennametal	Iscar
	M01		Matorial	naranotan						UN10			
	M10	TU10		EH510 U10E	H10A		WA10B	UMN	MT1	UN20	890	K313	
M Stainless steel	M20	TU20	UTi20T	EH520 U2	H13A		EX35	DX25 UMS	KM1	UN30	HX 883	K68 KMF K125M TTM	IC07 IC08
	M30	UX30	UTi20T	A30 A30N	H10F SM30		EX40 EX45	DX25 UMS	KM3	UN40		K600 TTR	IC28
	M40	TU40			S6		EX45	UM40				G13	IC28
	K01	TH03	HTi05T	H1 H2	H1P		WH05	KG03		HN05		K605	
K Cast irons	K10	G1F TH10	HTi10	EH10 EH510	H1P H10 HM	KW10	WH10	KG10 KT09		HN10 G1	890	K10 K313 KF1 KM1 K110M THM THM-U	IC20
	K20	G2F G2 KS20	UTi20T	G10E EH20 EH520	H13A	GW10	WH20	CR1 KG20	KM1	G2	890 HX 883	K715 KMF K600	IC20 IC10
	K30	G3	UTi20T	G10E				KG30	KM3	G3	883	THR	IC10 IC28
	K40											G13	IC28
	N01			H1 H2	H10 H13A			KG03				K605	
2	N10	TH10 H10T KS05F	HTi10	EH10 EH510				KG10 KT9		HN05	890 H15	K10 K313 KF1 KM1 K110M THM THM-U	IC08 IC20
Nonferrous metals	N20			G10E EH20 EH520				CR1 KG20	KM1		HX KX 883 H15 H25	K715 KMF K600	IC28 IC20
	N30							KG30	КМ3		H25	G13 THR	
	S01		RT9005					KG03					
	S10	TH10	RT9005 RT9010	EH10 EH510	H10 H10A H10F H13A			FZ05 KG10		HN05 HN10	890	K10 K313 THM	IC20
Super alloys	S20	KS20	RT9010 TF15	EH20 EH520				FZ15 KG20			890 883 HX H25	K715 KMF	IC20
	S30		TF15					KG30				G13 K600 THR	IC28
	H01	TH03		H1				KG03		HN05			
Hard	H10	TH10						FZ05 KG10		HN10			
Hard materials	H20							FZ15 KG20			890 HX 883		

•Ultra-fine Grain Cemented Carbide Grades

Chipbreaker Comparison Charts

•Negative inserts

A	Application code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Kyocera	Sandvik	Hitachi Tool	Kennametal	Dijet	lscar
	Precision finishing	TF, 01	PK	FA, FL	DP, XP CF			FF	PF	SF
		TS, TSF ZF	FH, SY, FY	FP	HQ, PS, GP VF	PF QF	BCT	FN	UA, FT UR, UT	NF
	Finishing and light cutting	11, 17, NS AS AFW, ASW 27, NM	FS, C SH SW, MW SA	LU, SU, SK LUW, GUW SP	XQ CJ WQ CQ	MF WF, WM, WR	FE CE BE			No sign WG
		СВ	R/L-1G, R/L-K R/L-F, R/L-FS	ST, C						C, RF
Steels	Medium cutting	TM DM 32Y ZM, 37, 38 33, All round	MV, MZ, MA MH All round	UG, UU GUW, UX, GU UA UM, UZ, MC	GS, HS CS, PT HK, XS GC, All round	PM, QM SM R/L-K	AE , AY AH Y, V	P MN	PG, UB, GN GNP	TF, PP, LF
	Medium to heavy cutting	TH	GH	MU, MX UZ	GT, HT	PR(P) MR	RE AR	RN, RP MG	GG, UD	TNM, NR
	Heavy cutting	TU 57 65	HZ, HX, HV, HA HAS, HBS, HCS HDS, HXD	MP, HG, HP	нх	PR MR 31, HR, QR	TE, UE H HX, HE	RM RH	UC	NM Without chipbreaker
	Finishing and light cutting	SS	MS	SU	GU	MF 23	SE	FP	SF	
Stainless steel	Medium cutting	S SM	ES, 2G MA	EX, UP, UG MU, MM, GU	ST HU, SU	MM, QM	DE	MP , P	SG	TF, PP
	Heavy cutting	тн ти		MP, HG, HP		MR QR, HR		RM RH		
	Finishing	CF Without chipbreaker	SH	FX, FY	All round, C	KF Without chipbreaker	Y , V Without chipbreaker	FN	Without chipbreaker	
K Cast irons	Medium cutting	CM, All round 33	All round	UM, UX	ZS	KM QM	AE	UM, P		
Cast Irons	Heavy cutting	СН	Without chipbreaker	MU, UZ, MM	GC Without chipbreaker	KR MR QR	RE	RP, MG RN	GG	GN
Nonferrous	Cutting of nonferrous metals	Р		UP, FY, GX	A3 AH	23	R/L	MS, MP RP, MG		PP
Super alloys	Cutting of heat resisting alloy	SA SM	MS ES FJ, MJ, GJ	FY, FX, SU EX, UP MU	SU	23 SR, NGP SM(NMX)		FS, LF K, GP, P MG-MS		PP

Positive inserts

A	pplication code	Tungaloy	Mitsubishi Material	Sumitomo Electric Hard Metal	Kyocera	Sandvik	Hitachi Tool	Kennametal	Dijet	Iscar
	Precision finishing	01		FW	CF		No sign	UF		SF
		PF	FV , SQ	FP, FZ, LU	XP, GP, DP	UF, PF	JQ	11, GM	FT	PF
	Finishing and light cutting	PS	SV	FK, SS, SC SU, SK, SF US	HQ, XQ , VF GP	PF(MF) PM(MM) UF, UM	JE	LF		SM, 14, 17 19, XL
		W08~20	R/L, R/L-FD R/L-FS, R/L-MV R/L-F, R/L-L	W, SD FX, FY	R/L A, B, C, H, Y	R/L-K				R/L RF, LF No sign
		РМ	MV No sign RR, RBS	SU, MU	HQ	PM, PR UM, UR	J	MF		DT, HQ
Steels		23		UJ	gp, dp	53				
	Medium cutting	24		SC (except for G-class inserts)	All round (No sign) G	No mark	JE			
		All round					All round			
		RS	No sign	RP		No mark	RG		GG	
	High-feed, small depth of cut cutting	61	No sign			No mark	WE			No sign 14
	Turning on small lathes	J08~10	R/L-SR, R/L-SN R/L-SS		F, J, U, CK FSF, USF, JSF	R/L-F			MF, MM ALU, MM1 ASF FT, ACB	
M Stainless steel	Finishing	SS	FV			MF MM, UM MR		GM, LF MF		
K Cast irons	Cutting of cast irons	Without chipbreaker	Without chipbreaker No sign	Without chipbreaker	Without chipbreaker	KF, R/L-K, KM Without chipbreaker UM, KR	Without chipbreaker	Without chipbreaker	Without chipbreaker	19
	Cutting of nonferrous	AL	MJ, FJ	AG, AW	AH	AL		GT-HP		AS
Nonferrous	metals	Read-type	R/L-F R/L	FY	A3					